References
- W. Delee, C. Oneil, F.R. Hawkes, H.M. Pinheiro, Anaerobic treatment of textile effluents: A review, J. Chem. Tech. Biotech., 73(4) (1998) 323-335. https://doi.org/10.1002/(SICI)1097-4660(199812)73:4%3C323::AID-JCTB976%3E3.0.CO;2-S
- A. Nishat, M. Yusuf, A. Qadir, Y. Ezaier, V. Vambol, M.I. Khan, S. Ben Moussa, H. Kamyab, S.S. Sehgal, C. Prakash, H.H. Yang, H. Ibrahim, S.M. Eldin, Wastewater treatment: A short assessment on available techniques, Alexandria Eng. J.,76 (2023) 505-516. https://doi.org/10.1016/j.aej.2023.06.054
- T.J. Al-Musawi, P. Rajiv, N. Mengelizadeh, I.A. Mohammed, D. Balarak, Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst, J. Environ. Manage, 292 (2021) 112777. https://doi.org/10.1016/j.jenvman.2021.112777
- J. Xiao, W. Lv, Z. Xie, Y. Tan, Y. Song, Q. Zheng, Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions, J. Mater. Chem. A, 4(31) (2016) 12126-12135. https://doi.org/10.1039/C6TA04119A
- Z. Zaheer, A. Al-Asfar, E.S. Aazam, Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: isotherms, kinetics and mechanisms, J. Mol. Liq., 283 (2019) 287-298. https://doi.org/10.1016/j.molliq.2019.03.030
- A.B. Neolaka, Y. Lawa, J. Naat, A.C. Lalang, B.A. Widyaningrum, G.F. Ngasu, K.A. Niga, H. Darmokoesoemo, M. Iqbal, H.S. Kusuma, Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder, Results Eng., 17 (2023) 100824. https://doi.org/10.1016/j.rineng.2022.100824
- R. Ahmad, K. Ansari, Fabrication of alginate@silver nanoparticles (Alg@AgNPs) bionanocomposite for the sequestration of crystal violet dye from aqueous solution, Int. J. Biol. Macromol., 218 (2022) 157-167. https://doi.org/10.1016/j.ijbiomac.2022.07.092
- A.H. Hashem, M. Hasanin, S. Kamel, S. Dacrory, A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide, Colloids Surf. B Biointerfaces, 209(1) (2021) 112172. https://doi.org/10.1016/j.colsurfb.2021.112172
- A.K. Rana, E. Frollini, V.K. Thakur, Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization, Int. J. Biol. Macromol., 182 (2021) 1554-1581. https://doi.org/10.1016/j.ijbiomac.2021.05.119
- M. Thakur, A. Sharma, V. Ahlawat, M. Bhattacharya, S. Goswami, Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose, Mater. Sci. Energy Technol., 3 (2020) 328-334. https://doi.org/10.1016/j.mset.2019.12.005
- X. Yu, Y. Jiang, Q. Wu, Z. Wei, X. Lin, Y. Chen, Preparation and characterization of cellulose nanocrystal extraction from Pennisetum hydridum fertilized by municipal sewage sludge via sulfuric acid hydrolysis, Front. Energy Res., Sec. Bioenergy Biofuels, 9 (2021) 1-10. https://doi.org/10.3389/fenrg.2021.774783
- A.K. Rana, V.K. Gupta, P. Hart, V.K. Thakur, Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications, Environ. Res., 243 (2024) 117889. https://doi.org/10.1016/j.envres.2023.117889
- Kusmono, R.F. Listyanda, M. Waziz Wildan, M. Noer Ilman, Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon, 6(11) (2020) e05486. https://doi.org/10.1016/j.heliyon.2020.e05486
- T. Ma, X. Hu, S. Lu, R. Cui, J. Zhao, X. Hu, Y. Song, Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation, Int. J. Biol. Macromol., 184 (2021) 405-414. https://doi.org/10.1016/j.ijbiomac.2021.06.094
- S. Rashid, H. Dutta, Characterization of nanocellulose extracted from short, medium and long grain rice husks, Ind. Crops Products, 154 (2020) 112627. https://doi.org/10.1016/j.indcrop.2020.112627
- R.M. Abdelaziz, A. El-Maghraby, W.A.A. Sadik, A.G.M. El-Demerdash, E.A. Fadl, Biodegradable cellulose nanocrystals hydrogels for removal of acid red 8 dye from aqueous solutions, Scientifc Reports, 12 (2022) 6424, 1-17. https://doi.org/10.1038/s41598-022-10087-1
- L. Chabane, O. Bouras, Experimental design approach in optimizing the sorption properties of a new generation of reinforced porous hybrid beads, Arab. J. Chem., 13(8) (2020) 6461-6471. https://doi.org/10.1016/j.arabjc.2020.06.004
- L. Chabane, B. Cheknane, F. Zermane, O. Bouras, M .Baudu, Synthesis and characterization of reinforced hybrid porous beads: Application to the adsorption of malachite green in aqueous solution, Chem. Eng. Res. Des., 120 (2017) 291–302. https://doi.org/10.1016/j.cherd.2016.12.014
- Holilah, Asranudin, N. El Messaoudi, M. Ulfa, A. Hamzah, Z.A. Abdul Hamid, D.V. Ramadhani, L. Suryanegara, M. Mahardika, A. Tata Melenia, A.W. Pratama, D. Prasetyoko, Fabrication a sustainable adsorbent nanocellulose-mesoporous hectorite bead for methylene blue adsorption, Case Studies Chem. Environ. Eng., 10 (2024) 100850. https://doi.org/10.1016/j.cscee.2024.100850
- S. Nam, A.D. French, B.D. Condon, M. Concha, Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II, Carbohydrate Polymers, 135 (2016) 1-9. https://doi.org/10.1016/j.carbpol.2015.08.035
- J.M. Jabar, Y.A. Odusote, Y.T. Ayinde, M. Yılmaz, African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye, Res. Eng., 14 (2022) 100385. https://doi.org/10.1016/j.rineng.2022.100385
- A. Khalfaoui, E.M. Bouchareb, K. Derbal, S. Boukhaloua, B. Chahbouni, R. Bouchareb, Uptake of Methyl Red dye from aqueous solution using activated carbons prepared from Moringa Oleifera shells, Cleaner Chem. Eng., 4 (2022) 100069. https://doi.org/10.1016/j.clce.2022.100069
- N.F. Al-Harby, E.F. Albahly, N.A, Mohamed, Kinetics, isotherm and thermodynamic studies for efficient adsorption of congo red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent, Polymers, 13(24) (2021) 4446. https://doi.org/10.3390/polym13244446
- C. Poornachandhra, R.M. Jayabalakrishnan, M. Prasanthrajan, G. Balasubramanian, A. Lakshmanan, S. Selvakumar, J.E. John, Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics, RSC Adv., 13 (2023) 4757-4774. https://doi.org/10.1039/D2RA08283G
- Q. Hu, D.-W. Gao, H. Pan, L. Hao, P. Wang, Equilibrium and kinetics of aniline adsorption onto crosslinked sawdust-cyclodextrin polymers, RSC Adv., 75 (4) (2014) 40071-40077. https://doi.org/10.1039/C4RA05653A
- Saruchi, V. Kumar, Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb2+ ions from aqueous solutions by a hybrid ion-exchanger, Arab. J. Chem., 12(3) (2019) 316-329. https://doi.org/10.1016/j.arabjc.2016.11.009
- H. Deb, K. Hasan, Md Zahidul Islam, L. Kai, S. Yang, Y. Zhang, J. Yao, The statistical error optimization of dye sorption equilibria for the precise prediction of adsorption isotherms on activated graphene, Appl. Sci., 13(14) (2023) 8106. https://doi.org/10.3390/app13148106
- Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis, J. Molec. Liquids, 277 (2019) 646-648. https://doi.org/10.1016/j.molliq.2019.01.005
- A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arab. J. Chem., 14(6) (2021) 103186. https://doi.org/10.1016/j.arabjc.2021.103186
- A. El-Hashani, K.M. Elsherif, K. Edbey, F. Alfaqih, M. Alomammy, S. Alomammy, Biosorption of eriochrome black T (EBT) onto waste tea powder: Equilibrium and kinetic studies, Chemistry J., 1(3) (2018) 263-275.
- B. Priyadarshini, P.P. Rath, S.S. Behera, S.R. Panda, T.R. Sahoo, P.K. Parhi., Kinetics, thermodynamics and isotherm studies on adsorption of eriochrome Black-T from aqueous solution using rutile TiO2, IOP Conf. Series: Mater. Sci. Eng., 310 (2018) 012051. https://doi.org/10.1088/1757-899X/310/1/012051
- A.T. Ojedokun, O.S. Bello, Kinetic modeling of liquid-phase adsorption of congo red dye using guava leaf-based activated carbon, Appl. Water. Sci., 7 (2017) 1965–1977. https://doi.org/10.1007/s13201-015-0375-y
- X. Zhou, R. Maimaitiniyazi, Y. Wang, Some consideration triggered by misquotation of Temkin model and the derivation of its correct form, Arab. J. Chem., 15(11) (2022) 104267. https://doi.org/10.1016/j.arabjc.2022.104267
- Momina, S. Mohammad, I. Suzylawati, Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating, J. Water Process Eng., 34 (2020) 101155. https://doi.org/10.1016/j.jwpe.2020.101155
- E.M. Abdel Bary, A. Fekri, Y.A. Soliman, A.N. Harmal, Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression, Int. J. Environmen. Stud., 75(6) (2018) 950-964. https://doi.org/10.1080/00207233.2018.1472448
- M. Cheng, Z. Qin, Y. Chen, S. Hu, Z. Ren, M. Zhu, Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions, ACS Sustain. Chem. Eng., 5(6) (2017) 4656–4664. https://doi.org/10.1021/acssuschemeng.6b03194
- M.H. Rubiyah, K. Melethil, S. Varghese, M. Kurian, S. Babu, L. Jojo, B. Thomas, Isolation and characterization of cellulose nanofibrils from agro-biomass of Jackfruit (Artocarpus heterophyllus) rind, using a soft and benign acid hydrolysis, Carbohyd. Polym. Technol. Applic., 6 (2023) 100374. https://doi.org/10.1016/j.carpta.2023.100374
- A.N. Vu, L.H. Nguyen, H.C.V. Tran, K. Yoshimura, T.D. Tran, H.V. Le, N.U.T. Nguyen, Cellulose nanocrystals extracted from rice husk using the formic/peroxyformic acid process: isolation and structural characterization, RSC Adv., 14 (2024) 2048–2060. https://doi.org/10.1039/D3RA06724F
- P. Boruah, R. Gupta, V. Katiyar, Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification, Carbohyd. Polym. Technol. Applic., 5 (2023) 100309. https://doi.org/10.1016/j.carpta.2023.100309
- N. Pandi, S.H. Sonawane, K.A. Kishore, Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis, Ultrason. Sonochem., 70 (2021) 105353. https://doi.org/10.1016/j.ultsonch.2020.105353
- H.V.T. Luong, P.P. Le, Q.Q.V. Thieu, V.N.H. Nguyen, T.N.Y. Nguyen, Alginate functionalized sugarcane cellulose-based beads to improve methylene blue adsorption from aqueous solution, Heliyon, 10(18) (2024) e37860. https://doi.org/10.1016/j.heliyon.2024.e37860
- M. Wu, Y. Zhang, X. Feng, F. Yan, Q. Li, Q. Cui, B. Li, Fabrication of cationic cellulose nanofibrils/sodium alginate beads for Congo red removal, iScience, 26(10) (2023) 7783. https://doi.org/10.1016/j.isci.2023.107783
- J.K. Adusei, E.S. Agorku, R.B. Voegborlo, F.K. Ampong, B.Y. Danu, F.A. Amarh, Removal of Methyl red in aqueous systems using synthesized NaAlg-g-CHIT/nZVI adsorbent, Scientific African, 17 (2022) e01273. https://doi.org/10.1016/j.sciaf.2022.e01273
- C.K. Enenebeaku, N.J. Okorocha, E.E. Uchechi, I.C. Ukaga, Adsorption and equilibrium studies on the removal of methyl red from aqueous solution using white potato peel powder, Int. Lett. Chem. Phys. Astron., 72(52) (2017). https://doi.org/10.18052/WWW.SCIPRESS.COM%2FILCPA.72.52
- R. Lafi, L. Abdellaoui, I. Montasser, W. Mabrouk, A. Hafiane, The effect of head group of surfactant on the adsorption of methyl red onto modified coffee residues, J. Molec. Struct., 1249 (2022) 131527. https://doi.org/10.1016/j.molstruc.2021.131527
- M.D. Teweldebrihan, M.O. Dinka, Methyl red adsorption from aqueous solution using Rumex Abyssinicus-derived biochar: Studies of kinetics and isotherm, Water, 16(16) (2024) 2237. https://doi.org/10.3390/w16162237
- H.S. Rafida, H. Prasetia, A. Saefumillah Adsorption study of methylene blue and methyl red on activated carbon from silver composite using the extract of spent coffee grounds, J. Sains Materi Indonesia, 25(2) (2024) 77–84. https://doi.org/10.55981/jsmi.2024.924
- A.S.A. Ahmed, M.M.S. Sanad, A. Kotb, A.N.R.M. Negm, M.H. Abdallaha, Removal of methyl red from wastewater using a NiO@Hyphaene thebaica seed-derived porous carbon adsorbent: kinetics and isotherm studies, Mater. Adv., 4(14) (2023) 2981–2990. https://doi.org/10.1039/D3MA00226H
- N. Ullah, Z. Ali, A.S. Khan, B. Adalat, A. Nasrullah, S.B. Khan, Preparation and dye adsorption properties of activated carbon/clay/sodium alginate composite hydrogel membranes, RSC Adv., 14 (1) (2024,) 211-221. https://doi.org/10.1039/d3ra07554k
- H. Kim, O. Purev, E. Myung, N. Choi, K. Cho, Removal of methyl red from aqueous solution using polyethyleneimine crosslinked alginate beads with waste foundry dust as a magnetic material, Int. J. Environ. Res. Public Health, 19(15) (2022) 9030. https://doi.org/10.3390/ijerph19159030
- J.L. Masengo, J. Mulopo, Synthesis and performance evaluation of adsorbents derived from sewage sludge blended with waste coal for nitrate and methyl red removal, Sci. Rep., 12 (2022) 1670. https://doi.org/10.1038/s41598-022-05662-5