

ICEIPE'24 (2025) 72–78 doi: 10.5004/ic202410

The second International Congress on Energy and Industrial Processes Engineering ICEIPE'24 USTHB, Algiers, 14–16 May 2024

Investigation of the effect of two nanocomposite preparation methods on enhancing Rhodamine B degradation via the photo-Fenton process

Assia Mansouri^{1,*}, Nadia Bendjaballah-Lalaoui¹, Sarah Medjbar²

¹Laboratoire Chimie des Matériaux, Catalyse et Environnement, Université des sciences et de la technologie Houari Boumediene, BP 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria, E-mail: amansouri@usthb.dz ²Centre de Recherche Nucléaire de Draria (CRND), Algiers, Algeria

ABSTRACT

In this study, a nanocomposite consisting of iron-doped titanium dioxide (FeTiO₂) and spinel NiFe₂O₄ was employed to enhance dye removal using the advanced oxidation process H₂O₂/UV. The co-precipitation method was used to synthesise both FeTiO₂ and spinel, followed by characterisation using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). To evaluate their efficiency as photocatalysts, the materials were tested under UV light irradiation for the degradation of Rhodamine B in water. Kinetic studies revealed that the reaction followed pseudo-first-order kinetics, with a rate constant of 6.95 × 10^{-3} min⁻¹ and degradation efficiencies of 68.57%, 67.21%, and 74.18% for NiFe₂O₄, FeTiO₂-Im, and FeTiO₂-SG, respectively. FeTiO₂-SG exhibited superior photocatalytic performance compared to spinel for the degradation of Rhodamine B, suggesting that FeTiO₂ is an efficient photocatalyst for the decolourisation of Rhodamine B.

Keywords: Rhodamine B; Photo-Fenton process; Dye; Photodegradation

^{*}Corresponding author