References

  1. T. Ben Hassen, H. El Bilali, Water management in the Gulf Cooperation Council: challenges and prospects, in Current Directions in Water Scarcity Research: Water Scarcity, Contamination, and Management, A.K. Tiwari et al., Eds. Elsevier, vol. 5, 2022, pp. 525–540.

  2. World Future Energy Summit - WFES, 2023, Tapped out – The new normal of rising water demand in the GCC. Available at https://www.worldfutureenergysummit.com/en-gb/future-insights-blog/tapped-out-the-newnormal-of-rising-water-demand-in-the-gcc.html.

  3. A. Elrahmani, J. Hannun, F. Eljack, M.-K. Kazi, Status of renewable energy in the GCC region and future opportunities. Curr. Opin. Chem. Eng., 31 (2021) 100664. https://doi.org/10.1016/j.coche.2020.100664

  4. Y.M. Al-Abdullah, F. Al-Ragom, O. Alsayegh, S.A. Al-Adwani, M. Khajah, N. Al-Mutairi, M. Al-Mutairi, Kuwait energy outlook 2023: The security–transition nexus of Kuwait. Kuwait Institute for Scientific Research (KISR), 2023.

  5. M. Crawford, 8 engineering challenges for desalination technologies. ASME, 2023. Available at https://www.asme.org/topics-resources/content/8-engineeringchallenges-for-desalination-technologies.

  6. F.E. Ahmed, A. Khalil, N, Hilal, Emerging desalination technologies: current status, challenges and future trends. Desalination, 517 (2021) 115183. https://doi.org/10.1016/j.desal.2021.115183

  7. T.O. Abimbola, K.W. Yusof, H. Takaijudin, A.S. Abdurrasheed, E.H.H. Al-Qadami, S.O. Oladipo, M.B. Shuaib, A concise review of major desalination techniques: features and limitations, in Proc. Int. Conf. on Civil, Offshore and Environmental Engineering, 2021, pp. 154–162.

  8. J. Lee,T. Younos, Desalination: opportunities and challenges. WaterWorld, 10 September 2019. Available at https://www.waterworld.com/home/article/14071194/desalination-opportunities-and-challenges.

  9. Solargis, Solar resource maps and GIS data for 200+ countries | Solargis, The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis, 2024. Available at https://solargis.com/maps-and-gis-data/download/kuwait.

  10. A. Al-Badi, I. Al Mubarak, Growing energy demand in the GCC countries. Arab J. Basic Appl. Sci., 26 (2019) 488–496. https://doi.org/10.1080/25765299.2019.1687396

  11. H. Salem, K. Khanafer, M. Alshammari, A. Sedaghat, S. Mahdi, Cooling degree days for quick energy consumption estimation in the GCC countries. Sustainability, 14 (2022) 13885. https://doi.org/10.3390/su142113885

  12. F. De La Cerna, Demand for energy-efficient systems is driving the GCC’s HVAC market construction week online. Construction Week Online, 10 September 2017. Available at https://www.constructionweekonline.com/news/article-46219-demand-for-energy-efficientsystems-is-driving-the-gccs-hvac-market

  13. I. John, GCC needs $220b for new cooling, power capacities. Khaleej Times, 2015. Available at https://www.khaleejtimes.com/local-business/gcc-needs-220b-for-new-cooling-power-capacities.

  14. R.A. Almasri, M.S. Alshitawi, Electricity consumption indicators and energy efficiency in residential buildings in GCC countries: extensive review. Energy Build, 255 (2022) 111664. https://doi.org/10.1016/j.enbuild.2021.111664

  15. H.K. Abdulrahim, M. Ahmed, Desalination and cooling system. United States Patent No. US 11,407,659 B1. Kuwait Institute for Scientific Research (KISR), 2022.

  16. R. Nikbakhti, X. Wang, A.K. Hussein, A. Iranmanesh, Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Eng. J., 59 (2020) 707–738. https://doi.org/10.1016/j.aej.2020.01.036

  17. A. Pearson, Development of refrigeration and heat pump systems. Front. Therm. Eng., 2 (2022) 1–6. https://doi.org/10.3389/fther.2022.1042347

  18. D.S. Ayou, M.F.V. Wardhana, A. Coronas, Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. Energy, 268 (2023) 126679. https://doi.org/10.1016/j.energy.2023.126679

  19. Y. Wang, T. Morosuk, S. Yang, W. Cao, A high-efficiency multi-function system based on thermal desalination and absorption cycle for water, water-cooling or water-heating production. Energy Convers. Manage., 284 (2023) 116962. https://doi.org/10.1016/j.enconman.2023.116962

  20. H. Nikkhah, B. Beykal, Process design and technoeconomic analysis for zero liquid discharge desalination via LiBr absorption chiller integrated HDH-MEE-MVR system. Desalination, 558 (2023) 116643. https://doi.org/10.1016/j.desal.2023.116643

  21. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithm. John Wiley and Sons, Ltd., USA, 2001.

  22. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing. Springer-Verlag, New York, 2003.

  23. C.A. Coello, D.A. van Veldhuizen, G.B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum Publishers, New York, 2002.

  24. J. Andersson, Multi-objective optimization in engineering design: applications to fluid power systems. Ph.D. Dissertation No. 675, Linkoping Studies in Science and Technology, Department of Mechanical Engineering, Linköping University, Sweden, 2001.

  25. F. Vince, F. Marechal, E. Aoustin, P. Bréant, Multi-objective optimization of RO desalination plants. Desalination, 222 (2008) 96–118. https://doi.org/10.1016/j.desal.2007.02.064

  26. B. Dennis, I. Egorov, Z.-X. Han, G. Dulikravich, C. Poloni, Multi-objective optimization of turbo-machinery cascades for minimum loss, maximum loading, and maximum gap-to-chord ratio. Int. J. Turbo Jet Engines, 18 (2000) 201–210. https://doi.org/10.1515/TJJ.2001.18.3.201

  27. M.S. Tanvir, I.M. Mujtaba, Optimisation of design and operation of MSF desalination process using MINLP technique in gPROMS. Desalination, 222 (2008) 419–430. https://doi.org/10.1016/j.desal.2007.02.068

  28. M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Performance evaluation of a thermo-responsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination, 452 (2019) 132–140. https://doi.org/10.1016/j.desal.2018.11.013

  29. R. Colciaghi, R. Simonetti, L. Molinaroli, M. Binotti, G. Manzolini, Potentialities of thermal responsive polymer in forward osmosis (FO) process for water desalination. Desalination, 519 (2022) 115311. https://doi.org/10.1016/j.desal.2021.115311

  30. C. Ezgi, Design and thermodynamic analysis of an H2O–LiBr AHP system for naval surface ship application. Int. J. Refrig., 48 (2014) 153–165. https://doi.org/10.1016/j.ijrefrig.2014.08.016

  31. H.K. Abdulrahim, M.A. Darwish, Thermal desalination and air conditioning using absorption cycle. Desal. Water Treat., 55 (2015) 3310–3329. https://doi.org/10.1080/19443994.2014.939492

  32. H.K. Abdulrahim, M. Ahmad, An innovative approach to desalination and cooling using forward osmosis with thermal recovery and vapor absorption cycle. Manuscript submitted for consideration at WSTA 15th Gulf Water Conference: Water in the GCC: Embracing Technological Progress, Doha, Qatar, 2024, pp. 28–30.

  33. H.K. Abdulrahim, F.N. Alasfour,Multi-objective optimisation of hybrid MSF–RO desalination system using genetic algorithm. Int. J. Exergy, 7 (2010) 387–424. https://doi.org/10.1504/IJEX.2010.031991