References

  1. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv., 2(2) (2016) e1500323; https://doi.org/10.1126/sciadv.1500323

  2. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43(9) (2009) 2317–2348. https://doi.org/10.1016/j.watres.2009.03.010

  3. T.B. Hassen, H. El Bilali, Water management in the Gulf Cooperation Council: Challenges and prospects. Curr. Direct. Water Scarc. Res., 5 (2022) 525–540. https://doi.org/10.1016/B978-0-323-85378-1.00026-X

  4. G.O. Odhiambo, Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Wat. Sci., 7(5) (2017) 2479–2492. https://doi.org/10.1007/s13201-016-0440-1

  5. M.F. Al-Rashed, M.M. Sherif, Water resources in the GCC countries: an overview. Water Resour. Manage., 14 (2000) 59–75. https://doi.org/10.1023/A:1008127027743

  6. Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046

  7. M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312 (2013) 124–129. https://doi.org/10.1016/j.desal.2012.07.034

  8. T. Hoepner, S. Lattemann, Chemical impacts from seawater desalination plants—a case study of the northern Red Sea. Desalination, 152 (2003) 133–140. https://doi.org/10.1016/S0011-9164(02)01056-1

  9. D.H. Kim, A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination, 270 (2011) 1–8. https://doi.org/10.1016/j.desal.2010.12.041

  10. MEWRE Statistical Year Book. State of Kuwait: Ministry of Electricity and Water and Renewable Energy, 2023.

  11. Y. Elsaie, S. Ismail, H. Soussa, M. Gado, A. Balah, Water desalination in Egypt; literature review and assessment. Ain Shams Eng. J., 14(7) (2023) 101998. https://doi.org/10.1016/j.asej.2022.101998

  12. S. Lattemann, Development of an Environ Impact Assessment and Decision Support System for Seawater Desal Plants. Ph.D. Dissertation, Delft University of Technology, Netherlands, 2010.

  13. M.A. Darwish, F.M. Al-Awadhi, A.M. Darwish, Energy and Water in Kuwait Part I. A sustainability view point. Desalination, 225 (2008) 341–355. https://doi.org/10.1016/j.desal.2007.06.018

  14. N. Ghaffour, S. Lattemann, T. Missimer, K.C. Ng, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies. Appl. Energy, 136 (2014) 1155–1165. https://doi.org/10.1016/j.apenergy.2014.03.033

  15. E. Jones, M. Qadir, M.T. van Vliet, V. Smakhtin, S.M. Kang, The state of desalination and brine production: a global outlook. Sci. Total Environ., 657 (2019) 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

  16. D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res., 44(18) (2010) 5117–5128. https://doi.org/10.1016/j.watres.2010.04.036

  17. D. Ariono, M. Purwasasmita, I.G. Wenten, Brine effluents: characteristics, environmental impacts, and their handling. J. Eng. Technol. Sci., 48(4) (2016) 367–387. http://dx.doi.org/10.5614/j.eng.technol.sci.2016.48.4.1

  18. S. Stein, H.A. Michael, B. Dugan, Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications. Water Res., 207 (2021) 117820. https://doi.org/10.1016/j.watres.2021.117820

  19. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science, 333(6043) (2011) 712–717. https://doi.org/10.1126/science.1200488

  20. M.C. Mickley, Membrane Concentrate Disposal: Practices and Regulation. Desalination and Water Purification Research and Development Program Report No. 123, 2007.

  21. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 309 (2013) 197–207. https://doi.org/10.1016/j.desal.2012.10.015

  22. Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. J. Membr. Sci., 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046

  23. S.C. Low, Preliminary studies of seawater desalination using forward osmosis. Desal. Water Treat., 7 (2009) 41–46. https://doi.org/10.5004/dwt.2009.698

  24. M. Mohammadifakhr, J. de Grooth, H.D. Roesink, A.J. Kemperman, Forward osmosis: a critical review. Processes, 8(4) (2020) 404. https://doi.org/10.3390/pr8040404

  25. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments. J. Membr. Sci., 281 (2006) 70–87. https://doi.org/10.1016/j.memsci.2006.05.048

  26. R.V. Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse. Water Res., 66 (2014) 122–139. https://doi.org/10.1016/j.watres.2014.08.021

  27. A. Altaee, G. Zaragoza, H.R. van Tonningen, Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination, 336 (2014) 50–57. https://doi.org/10.1016/j.desal.2014.01.002

  28. R.L. McGinnis, M. Elimelech, Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, 207 (2007 370–382. https://doi.org/10.1016/j.desal.2006.08.012

  29. T. Husnain, Y. Liu, R. Riffat, B. Mi, Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Sep. Purif. Technol., 156 (2015) 424–431. https://doi.org/10.1016/j.seppur.2015.10.031

  30. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J. Membr. Sci., 348 (2010) 337–345. https://doi.org/10.1016/j.memsci.2009.11.021

  31. P. Nicoll, Forward Osmosis is Not to Be Ignored. Proceedings of The International Desalination Association World Congress on Desalination and Water Reuse, Tinajin, China, October 20–25, 2013.

  32. L. Liu, M. Wang, D. Wang, C. Gao, Current patents of forward osmosis membrane process. Recent Patents Chem. Eng., 2(1) (2009) 76–82. http://dx.doi.org/10.2174/2211334710902010076

  33. D. Li, X. Zhang, G.P. Simon, H. Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res., 47(1) (2013) 209–215. https://doi.org/10.1016/j.watres.2012.09.049

  34. H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol., 81(3) (2011) 392–399. https://doi.org/10.1016/j.seppur.2011.08.007

  35. D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun., 47(6) (2011) 1710–1712. https://doi.org/10.1039/C0CC04701E

  36. Q. Ge, P. Wang, C. Wan, T.S. Chung, Polyelectrolyte-promoted forward osmosis–membrane distillation (FO–MD) hybrid process for dye wastewater treatment. Environ. Sci. Technol., 46(11) (2012) 6236–6243. https://doi.org/10.1021/es300784h

  37. M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res., 49(12) (2010) 5869–5876. https://doi.org/10.1021/ie100438x

  38. N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, M. Elimelech, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol., 45(10) (2011) 4360–4369. https://doi.org/10.1021/es104325z

  39. A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci., 343 (2009) 42–52. https://doi.org/10.1016/j.memsci.2009.07.006

  40. K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci., 8(2) (1981) 141–171. https://doi.org/10.1016/S0376-7388(00)82088-8

  41. M. Ahmed, M. Abdel-Jawad, Y. Al-Wazzan, A. Al-Odwani, J. Thomas, Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration. Desal. Water Treat., 66 (2017) 50–59. https://doi.org/10.5004/dwt.2017.11142

  42. M. Ahmed, B. Garudachari, K.A. Rajesha, J. Thomas, Evaluation of the separation performance of thin film composite forward osmosis membrane using sodium chloride draw solution for Arabian Gulf seawater desalination. Desal. Water Treat., 107 (2018) 1–9. https://doi.org/10.5004/dwt.2018.22077

  43. M. Ahmed, R. Kumar, Y. Al-Wazzan, B. Garudachari, J.P. Thomas, Assessment of performance of inorganic draw solutions tested in forward osmosis process for desalinating Arabian gulf seawater. Arab. J. Sci. Eng., 43(11) (2018) 6171–6180. https://doi.org/10.1007/s13369-018-3394-9

  44. M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Performance evaluation of a thermo-responsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination, 452 (2019) 132–140. https://doi.org/10.1016/j.desal.2018.11.013

  45. M. Ahmed, R. Kumar, B. Garudachari, J.P. Thomas, Assessment of pilot scale forward osmosis system for Arabian Gulf seawater desalination using polyelectrolyte draw solution. Desal. Water Treat, 157 (2019) 342–348. https://doi.org/10.5004/dwt.2019.24267

  46. M. Ahmed, R. Kumar, H. Sakurai, Y. Al-Wazzan, G. Bhadrachari, T. Nakao, J.P. Thomas, Exploring the performance parameters of a commercial-scale hollow fibre forward osmosis module during the Arabian Gulf seawater desalination. Arab. J. Sci. Eng., 47(5) (2022) 6181–6192. https://doi.org/10.1007/s13369-021-06018-3

  47. M. Ahmed, R.K. Alambi, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Design and optimization of a unique pilot scale forward osmosis integrated membrane distillation system for seawater desalination. J. Environ. Chem. Eng., 11(3) (2023) 109949. https://doi.org/10.1016/j.jece.2023.109949

  48. M. Ahmad, B. Garudachari, Y. Al-Wazzan, R. Kumar, J.P. Thomas, Mineral extraction from seawater reverse osmosis brine of Gulf seawater. Desal. Water Treat., 144 (2019) 45–56. https://doi.org/10.5004/dwt.2019.23679

  49. B. Garudachari, A. Al-Odwani, R.K. Alambi, M. Al-Tabtabaei, Y. Al-Foudari, Development of carbon nanotube membranes for dissolved gases removal as seawater pretreatment. Desal. Water Treat., 208 (2020) 104–109. https://doi.org/10.5004/dwt.2020.26465

  50. B. Garudachari, A. Al-Odwani, R. Kumar, M. Al-Tabtabaei, M. Al-Rughaib, Membrane degasification for desalination industries: a literature review. Desal. Water Treat., 238 (2021) 28–37. https://doi.org/10.5004/dwt.2021.27821

  51. R. Kumar, S. Al-Haddad, M. Al-Rughaib, M. Salman, Evaluation of hydrolyzed poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination, 394 (2016) 148–154. https://doi.org/10.1016/j.desal.2016.05.012

  52. K. Rajesha, H. Al-Jabli, S. Al-Haddad, M. Al-Rughaib, J. Samuel, Modified titanate nanotubes incorporated polyamide layer for the fabrication of fouling control thin-film nanocomposite forward osmosis membranes. Desal. Water Treat., 69 (2017) 56–64. https://doi.org/10.5004/dwt.2017.0623

  53. K. Rajesha, M. Salman, S. Al-Haddad, Evaluation of a mixture of amines for the preparation of the polyamide layer of the thin-film nanocomposite membranes for forward osmosis. Desal. Water Treat., 78 (2017) 49–56. https://doi.org/10.5004/dwt.2017.20903

  54. R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Evaluation of the forward osmosis performance of cellulose acetate nanocomposite membranes. Arab. J. Sci. Eng., 43 (2018) 5871–5879. https://doi.org/10.1007/s13369-017-3048-3

  55. R. Kumar, M. Ahmed, S. Ok, B. Garudachari, J.P. Thomas, Boron selective thin film composite nanofiltration membrane fabricated via a self-assembled trimesic acid layer at a liquid–liquid interface on an ultrafiltration support. New J. Chem., 43(9) (2019) 3874–3883. https://doi.org/10.1039/C8NJ05670F

  56. K. Rajesha, M. Ahmed, G. Bhadrachari, A. Al-Mesri, J.P. Thomas, Hydrophobically modified silica blend PVDF nanocomposite membranes for seawater desalination via direct contact membrane distillation. Desal. Water Treat., 148 (2019) 20–29. https://doi.org/10.5004/dwt.2019.23822

  57. R. Kumar, M. Ahmed, G. Bhadrachari, S. Al-Muqahwi, J.P. Thomas, Thin-film nanocomposite membrane comprised of a novel phosphonic acid derivative of titanium dioxide for efficient boron removal. J. Environ. Chem. Eng., 9(4) (2021) 105722. https://doi.org/10.1016/j.jece.2021.105722

  58. R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Thin film nanocomposite nanofiltration membrane, US 10, 124, 297 B1.

  59. Y. Al-Wazzan, M. Ahmed, A. Al-Mesri, M. Al-Tabtabaei, System and Method for Pretreating Turbid Seawater, US 10, 183, 882 B1.

  60. B. Garudachari, M. Ahmed, R. Kumar, J.P. Thomas, Desalination System with Mineral Recovery, US 10, 280, 095 B1.

  61. M. Ahmed, R. Kumar, B. Garudachari, Y. Al-Wazzan, J.P. Thomas, Pressure - Reduced Saline Water Treatment System, US 10, 308, 524 B1.

  62. M. Ahmed, R. Kumar, G. Bhadrachari, Y. Al-Wazzan, J.P. Thomas, High Water Recovery Hybrid Membrane System for Desalination and Brine Concentration, US 10, 940, 439 B1.

  63. H.K. Abdulrahim, M. Ahmed, Integrated Desalination and Air Conditioning System, US 11, 035, 581 B1.

  64. R. Kumar, M. Ahmed, B. Garudachari, J.P. Thomas, Method for Making Metal Organic Frameworks and Thin Film Nanocomposite Membranes Using the Same, US 11, 254, 691 B1.

  65. H.K. Abdulrahim, M. Ahmed, Desalination and Cooling System, US 11, 407, 659 B1.