References

  1. I.S. Al-Mutaz, Operation of dual-purpose MSF plants at water/power peak demand, Desalination, 84 (1991) 105. http://dx.doi.org/10.1016/0011-9164(91)85121-A

  2. I.S. Al-Mutaz, A.M. Al-Namlah, Characteristics of dual-purpose MSF desalination plants, Desalination, 166 (2004) 287–294. https://doi.org/10.1016/j.desal.2004.06.083

  3. M. Kharbach, Fuel consumption efficiency for electricity and water production in Abu Dhabi, Energy Strategy Rev., 13–14 (2016) 109–114. https://doi.org/10.1016/j.esr.2016.09.002

  4. I.S. Al-Mutaz, M.A. Soliman, Optimum operation of steam-power cycle in dual purpose MSF desalination plants, Desalination, 84 (1991) 104. https://doi.org/10.1016/0011-9164(91)85120-J

  5. M.A.K. Al-Sofi, M.M. Srouji, Fuel allocation in dual-purpose plants, Desalination, 100 (1995) 65–70. https://doi.org/10.1016/0011-9164(96)00007-0

  6. M.N. Saeed, Fuel efficiencies, allocation of fuels and fuel costs for power and desalination in dual purpose plants: a novel methodology, Desalination, 85 (1992) 213–229. https://doi.org/10.1016/0011-9164(92)80006-U

  7. M. de Sá Moreira, I.F.S. dos Santos, L.F Freitas, R. Mambeli Barros, G.L. Tiago Filho, Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil, Environ. Dev. Sustain., 24 (2022) 1799–1826. https://doi.org/10.1007/s10668-021-01509-7

  8. M.A. Darwish, H.K. Abdulrahim, A.A. Mabrouk, A.S. Hassan, Cogeneration power-desalting plants using gas turbine combined cycle, Desalination Updates, R.Y. Ning, Ed., InTech Open Access, 2015. https://dx.doi.org/10.5772/60209

  9. M.W. Shahzad, K.C. Ng, K. Thu, An improved cost apportionment for desalination combined with power plant: an exergetic analyses, Appl. Mech. Mater. 819 (2016) 530–535. https://doi.org/10.4028/www.scientific.net/AMM.819.530

  10. O. A. Hamed, Fuel utilization of power/water cogeneration plants, Desal. Water Treat., 140 (2019) 7–13, http://dx.doi.org/10.5004/dwt.2019.23463

  11. Y. Wang, N. Lior, Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system, Desalination 214 (2007) 306–326. https://doi.org/10.1016/j.desal.2007.01.001

  12. O. A. Hamed, H.A. Al-Washmi, H.A. Al-Otaibi, Thermo-economic analysis of a power/water cogeneration plant, Energy, 31 (2006) 2699–2709. https://doi.org/10.1016/j.energy.2005.12.011

  13. X. Yang, Z. Liu, J. Xia, Optimization and analysis of combined heat and water production system based on a coal-fired power plant, Energy, 262, Part B (2023) 125611. https://doi.org/10.1016/j.energy.2022.125611

  14. A. Chun, M.A. Barone, A.B. Lourenço, Optimization of three power and desalination plants and exergy-based economic and CO2 emission cost allocation and comparison, Int. J. Energ. Water Res., 4 (2020) 13–25. https://doi.org/10.1007/s42108-019-00047-3

  15. P.G. Iora, A.F. Ghoniem, G.P. Beretta, What fraction of the fuel consumed by a heat-and-power cogeneration facility should be allocated to the heat produced? Old problem, novel approach, ASME 2013 International Mechanical Engineering Congress and Exposition, November 15-21, 2013, San Diego, California, USA.

  16. T. Kotas, The Exergy Method of Thermal Plant Analysis, Butterworths, London, 1985.