References

  1. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, 2016. https://doi.org/10.2166/9781780407500

  2. I. Pikaar, K.R. Sharma, S. Hu, W. Gernjak, J. Keller, Z. Yuan, Water engineering. Reducing sewer corrosion through integrated urban water management, Science, 345(6198) (2014) 812–814. https://doi.org/10.1126/science.1251418

  3. Y.Q. Zhao, M. Razali, A.O. Babatunde, Y. Yang, M. Bruen, Reuse of aluminum-based water treatment sludge to immobilize a wide range of phosphorus contamination: Equilibrium study with different isotherm models, Sep. Sci. Technol., 42(12) (2007) 2705–2721. https://doi.org/10.1080/01496390701511531

  4. J. Keeley, P. Jarvis, A.D. Smith, S.J. Judd, Coagulant recovery and reuse for drinking water treatment, Water Res., 88 (2016) 502–509. https://doi.org/10.1016/j.watres.2015.10.038

  5. T.C. Odimegwu, I. Zakaria, M.M. Abood, C.B.K. Nketsiah, M. Ahmad, Review on different beneficial ways of applying alum sludge in a sustainable disposal manner, Civil Eng. J., 4(9) (2018) https://doi.org/10.28991/cej-03091153

  6. J. Kluczka, M. Zołotajkin, J. Ciba, M. Staroń, Assessment of aluminum bioavailability in alum sludge for agricultural utilization, Environ. Monit. Assess., 189 (2017) 422. https://doi.org/10.1007/s10661-017-6133-x

  7. H. Rigby, D. Pritchard, D. Collins, K. Walton, N. Penney, The use of alum sludge to improve cereal production on a nutrient-deficient soil, Environ. Technol., 34(11) (2013) 1359-1368. https://doi.org/10.1080/09593330.2012.747037

  8. L. Djekoune, Z. Salem, A. Maaliou, S. Boucetta, A. Ouakouak, Reuse of sludge from drinking water production in dye wastewater treatment of textile industry, Desal. Water Treat., 277 (2022) 72–84. https://doi.org/10.5004/dwt.2022.28962

  9. L. Djekoune, A. Maaliou, Z. Salem, D. Ziani, R. Kamel, A. Ouakouak, O. Baigenzhenov, D.O. Bokov, A. Ivanets, A. Hosseini-Bandegharaei, Phosphate adsorption on dried alum sludge: Modeling and application to treatment of dairy effluents, Environ. Res., 252(P3) (2024) 118976. https://doi.org/10.1016/j.envres.2024.118976

  10. J. Jiao, J. Zhao, Y. Pei, Adsorption of Co(II) from aqueous solutions by water treatment residuals, J. Environ. Sci., 52 (2017) 232–239. https://doi.org/10.1016/j.jes.2016.04.012

  11. M. Silvetti, P. Castaldi, G. Garau, D. Demurtas, S. Deiana, Sorption of cadmium(II) and zinc(II) from aqueous solution by water treatment residuals at different pH values, Water Air Soil Pollut., 226 (2015) 313. https://doi.org/10.1007/s11270-015-2578-0

  12. C.H. Huang, S.Y. Wang, Application of water treatment sludge in manufacturing of lightweight aggregates, Construc. Build. Mater., 43 (2013) 174-183. https://doi.org/10.1016/j.conbuildmat.2013.02.016

  13. N. Husillos Rodríguez, S. Martínez Ramírez, M.T. Blanco Varela, M. Guillem, J. Puig, E. Larrotcha, J. Flores, Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions, Cement Concrete Res., 40(5) (2010) 778-786. https://doi.org/10.1016/j.cemconres.2009.11.012

  14. M.T. Blanco-Varela, N. Husillos Rodríguez,, S. Martínez Ramírez, Validity of water treatment industry wastes in cement industry, Civil Environ. Res., 4 (2013) 10-15.

  15. O.A. Johnson, M. Napiah, I. Kamaruddin, Potential uses of waste sludge in construction industry: a review, Res. J. Appl. Sci. Eng. Technol., 8(4) (2014) 565-570. http://dx.doi.org/10.19026/rjaset.8.1006

  16. M.F. Al-Hamati, G.F. Faris, Reuse of alum sludge in clay roof tiles manufacturing, International Conference of Engineering, Information Technology and Science, 2014, pp. 93-97. http://dx.doi.org/10.13140/2.1.3713.9527

  17. S. Orsetti, Influence des sulfates sur l’apparition et le développement de pathologies dans les matériaux de génie civil traits ou non aux liants hydrauliques. Cas du plâtre dans les granulats issus de produit de démolition, PhD, Paris VI 472, 1997.

  18. L.G. Graupner de Godoy, A.B. Rohden, M.R. Garcez, E. Bastos da Costa, S. Da Dalt, J.J. de Oliveira Andrade, Valorization of water treatment sludge waste by application as supplementary cementitious, Construc. Build. Mater., 223 (2019) 939–950. https://doi.org/10.1016/j.conbuildmat.2019.07.333

  19. D.A. Fungaro, M.V. da Silva, Utilization of water treatment plant sludge and coal fly ash in brick manufacturing, Am. J. Environ. Protect., 2(5) (2014) 83–88. https://doi.org/10.12691/env-2-5-2

  20. A. Qlihaa, S. Dhimni, F. Melrhaka, N. Hajjaji, A. Srhiri, Physico-chemical characterization of a Moroccan clay, J. Mater. Environ. Sci., 7(5) (2016) 1741-1750.

  21. L.A. Acka1, R. Guru, M. Peiravi, M. Mohanty, X. Ma, S. Kumar, J. Liu, Characterization of Southern Illinois water treatment residues for sustainable applications, Sustainability, 10(5) (2018) 1374. https://doi.org/10.3390/su10051374

  22. T. Ahmad, K. Ahmad, M. Alam, Sustainable management of water treatment sludge through 3'R' concept, J. Cleaner Prod., 124 (2016) 1-13. https://doi.org/10.1016/j.jclepro.2016.02.073

  23. A.M. Hidalgo, M.D. Murcia, M. Gómez, E. Gómez, C. García-Izquierdo, C. Solano, Possible uses for sludge from drinking water treatment plants, J. Environ. Eng., 143(3) (2017). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001176

  24. B. Ren, Transforming Alum Sludge into Value-Added Products for Various Reuse, PhD thesis, University of Toulouse, France, 2019.

  25. S. De Carvalho Gomes, J.L. Zhou, W. Li, F. Qu, Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure, Resour. Conserv. Recycl., 161 (2020) 104970. https://doi.org/10.1016/j.resconrec.2020.104970

  26. Y. Bentahar, Caractérisation physico-chimique des argiles marocaines : application à l’adsorption de l’arsenic et des colorants cationiques en solution aqueuse, PhD thesis, Abdelmalek Essaadi University, Tetouan, Maroc, 2017.

  27. A.B.M.A. Kaish, K.M. Breesem, M.M. Abood, Influence of pre-treated alum sludge on properties of high-strength self-compacting concrete, J. Cleaner Prod., 202 (2018) 1085-1096. https://doi.org/10.1016/j.jclepro.2018.08.156

  28. M. Frías, R. Vigil de la Villa, I. de Soto, R. García, T.A. Baloa, Influence of activated drinking-water treatment waste on binary cement-based composite behavior: Characterization and properties, Composites Part B Eng, 60 (2014) 14-20. https://doi.org/10.1016/j.compositesb.2013.12.020

  29. L. Wang, F. Zou, X. Fang, D.C.W. Tsang, C.S. Poon, Z. Leng, K. Baek, A novel type of controlled low strength material derived from alum sludge and green materials, Construct. Build. Mater., 165 (2018) 792–800. https://doi.org/10.1016/j.conbuildmat.2018.01.078

  30. Y. Liu, Y. Zhuge, C.W.K. Chow, A. Keegan, D. Li, P.N. Pham, J. Huang, R. Siddique, Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing, J. Cleaner Prod., 261 (2020) 121257. https://doi.org/10.1016/j.jclepro.2020.121257

  31. M. Dahhou, M. El Moussaouiti, M.A. Arshad, S. Moustahsine, M. Assafi, Synthesis and characterization of drinking water treatment plant sludge-incorporated Portland cement, J. Mater. Cycles Waste Manage., 20(2) (2018) 891–901. https://doi.org/10.1007/s10163-017-0650-0
  32. S.H. Al-Tersawy, F.A. El Sergany, Reuse of water treatment plant sludge and rice husk ash in concrete production, Int. J. Eng. Sci. Res. Technol., 5(12) (2016) 138–152. https://doi.org/10.5281/zenodo.192524

  33. L.P. Fernandez, P.C.B. Mikowski, G. Macioski, A. Nagalli, F.B. Freire, Study of water treatment sludge incorporation into interlocking concrete pavers, Matéria (Rio J.), 23(3) (2018). https://doi.org/10.1590/S1517-707620180003.0490

  34. N.F. Tafarel, G. Macioski, K.Q. de Carvalho, A. Nagalli, D.C. de Freitas, F.H. Passig, Avaliação das propriedades do concreto devido à incorporação de lodo de estação de tratamento de água, Matéria (Rio J.), 21(4) (2016) 974–986. https://doi.org/10.1590/S1517-707620160004.0090

  35. L. Wang, J.S.H. Kwok, D.C.W. Tsang, C.-S. Poon, Mixture design and treatment methods for recycling contaminated sediment, J. Hazard. Mater., 283 (2015) 623-632. https://doi.org/10.1016/j.jhazmat.2014.09.056

  36. A.T. Albayak, M. Yasar, M.A. Gurkaynak, I. Gurgey, Investigation of the effects of fatty acids on the compressive strength of the concrete and the grindability of the cement, Cement Concrete Res., 35(2) (2005) 400-404. https://doi.org/10.1016/j.cemconres.2004.07.031

  37. D. Ivsic-Bajceta, Ž. Kamberovic, M. Koraci, M. Gavrilovski, A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter, J. Serbian Chem. Soc., 78(5) (2013) 725–739. https://doi.org/10.2298/JSC120716125I

  38. X. Zhang, Z. Hu, H.H. Ngo, J. Zhang, W. Guo, S. Liang, H. Xie, Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland, Water Res., 130 (2018) 79-87. https://doi.org/10.1016/j.watres.2017.11.061

  39. M. Wang, Y. Zhu, L. Cheng, B. Andserson, X. Zhao, D. Wang, A. Ding, Review on utilization of biochar for metal-contaminated soil and sediment remediation, J. Environ. Sci., 63 (2018) 156–173. https://doi.org/10.1016/j.jes.2017.08.004

  40. S.D.C. Gomes, Effect of recycled natural water treatment sludge and biochar on the mechanical performance and hydration kinetics of Portland cement composite, Thesis submitted in fulfilment of the requirements for the degree of Master of Engineering (Research), University of Technology Sydney, 2020.

  41. K. Gomes Ramirez, E. Possan, B.G. dos Santos Dezen, M. Colombo, Potential uses of waste sludge in concrete production, Manage. Environ. Quality, 28(6) (2017) 821–838. https://doi.org/10.1108/MEQ-09-2015-0178

  42. Z. Tang, W. Li, G. Ke, J.L. Zhou, V.W.Y. Tam, Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes, J. Cleaner Prod., 218 (2019) 810–822. https://doi.org/10.1016/j.jclepro.2019.01.337