References

  1. ATC-40, Seismic evaluation end retrofit of concrete building, Report No.SSC 96 01, Redwood City, CA, USA, 1996.

  2. Eurocode 8 (), Design for earthquake resistance, part 1: general rules, seismic actions and rules for buildings, European standard EN 1998-1. European Committee for Standardization (CEN), Brussels, 2004.

  3. FEMA 273, NEHRP, Guidelines for the seismic rehabilitation of buildings, Building Seismic Safety Council, Washington DC, USA, 1997.

  4. N. Khelil, M. Ould Oual, L. Meziane, On the use of fine dune sand in reactive powder concrete: effect on resistance, water absorption and UPV properties. Construct. Build. Mater., 388 (2023) 131684. https://doi.org/10.1016/j.conbuildmat.2023.131684

  5. K. Chahour, H. Mechakra, B. Safi, N.-M. Dehbi, C. Chaibet, Rheological and mechanical behavior study of eco-friendly cement mortar made with marble powder. Int. J. Appl. Mech. Eng., 29(1) (2024) 19-35. https://doi.org/10.59441/ijame/176204

  6. A. Elsheikh, S.K. Al-Zayadi, A.S. Albo-Hassan, Experimental investigation of concrete incorporating recycled concrete aggregates. Innov. Infrastruct. Solut., 9 (2024) 194. https://doi.org/10.1007/s41062-024-01486-6

  7. M. Ould Ouali, P. Poorsolhjouy, L. Placidi, A. Misra, Evaluation of the effects of stress concentrations on plates using granular micromechanics. Construct. Build. Mater., 290 (2021) 123227. https://doi.org/10.1016/j.conbuildmat.2021.123227

  8. A. Kahil, A. Nekmouche, S. Boukais, M. Hamizi, N.E. Hannachi, Effect of RC wall on the development of plastic rotation in the beams of RC frame structures. Front. Struct. Civil Eng., 12 (2018) 318–320. https://doi.org/10.1007/s11709-017-0420-z

  9. A. Kezmane, S. Boukais, M. Hamizi, Numerical simulation of squat reinforced concrete walls strengthened by FRP composite material, Front. Struct. Civil Eng., 10 (2016) 445–455. https://doi.org/10.1007/s11709-016-0339-9

  10. S. Djenad, S.A. Taleb, A.S. Salem, Finite element modeling of partially-confined concrete and RC columns with embedded hexagonal-FRP strips under axial and horizontal loading. Structures, 54 (2023) 369-385. https://doi.org/10.1016/j.istruc.2023.05.065

  11. L. Madouni, M. Ould Ouali, N.E. Hannachi, Numerical assessment of the load transfer in steel coupling beam-reinforced concrete shear wall connection. Asian J. Civil Eng., 20 (2019) 35–47. http://dx.doi.org/10.1007/s42107-018-0086-4

  12. F.J. Vecchio, M.B. Emara, Shear deformations in reinforced concrete frames. ACI Struct. J., 89(1) (1992) 46–56.

  13. A. Aréde, Seismic Assessment of Reinforced Concrete Frame Structures with a New Flexibility Based Element, PhD Dissertation, Porto University, Portugal, 1997.

  14. Y. Sun, J. Xiao, D. Zhou, Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading, Front. Archit. Civil Eng. China, 2 (2008) 302–308. https://doi.org/10.1007/s11709-008-0050-6

  15. T.B. Panagiotakos, M.N. Fardis, Deformations of reinforced concrete members at yielding and ultimate. ACI Struct. J., 98(2) (2001) 135-148.

  16. D. Biskinis, M.N. Fardis, Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars, Struct. Concrete, 11(2) (2010) 93–108.

  17. D. Biskinis, M.N. Fardis, Deformation at flexural yielding of members with continuous or lap-spliced bars. Struct. Concrete, 11(3) (2010) 127–138.

  18. A. Nekmouche, M. Hamizi. S. Boukais, N.E. Hannachi, Pushover analysis application for damage assessment in critical section of RC/frame, 6th Int. Conf. on Mechanics and Materials in Design, Delgada, Portugal, 30‒31 July 2015.

  19. B. Alfarah, F. López-Almansa, S. Oller, New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures, Eng. Struct., 132 (2017) 70–86. https://doi.org/10.1016/j.engstruct.2016.11.022

  20. V. Davidovici, Séisme de Boumerdes, Rapport préliminaire du Ministère de l’Habitat, Algérie, Mai 2003.

  21. H. Tlemat, K. Pilakoutas, K. Neocleous, Stress-strain characteristic of SFRC using recycled fibres. Mater. Struct., 39 (2006) 365–377. https://doi.org/10.1007/s11527-005-9009-4

  22. H. Tlemat, Steel fibers from waste tyres to concrete: testing, modelling and design. PhD thesis, Faculty of Engineering of the University of Sheffield. England, 2004.

  23. J. Lubliner, J. Oliver, S. Oller, E. Oñate, A plastic-damage model for concrete. Int. J. Solids Structures, 25(3) (1989) 299-326. https://doi.org/10.1016/0020-7683(89)90050-4

  24. J. Lee, G.L. Fenves, Plastic-damage model for cyclic loading of concrete structures, J. Eng. Mech., 124(8) (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

  25. N. Talbi, A. Nekmouche, M. Ould Ouali, N.E. Hannachi, M. N. Farsi, Modeling the contribution of tire-reclaimed and industrial steels fibers on the strength and ductility of RC-frames structures. World J. Eng., 20(5) (2023) 888-904. https://doi.org/10.1108/WJE-12-2021-0696

  26. P. Rossi, Les bétons de fibres métalliques, Presses de l'école nationale des Ponts et Chaussées (ENPC), 1998.

  27. N. Talbi, A. Nekmouche, M. Ould Ouali, Local reinforcement of reinforced concrete frame using metal fibers recovered from used tire steel. 2nd Int. Congress on Energy and Industrial Processes Engineering ICEIPE’24, USTHB, Algiers 14-16 May 2024.