References

  1. B. Singh, V. Sharma, G. Singh, R. Kumar, S. Arora, M. Paul, S. Ishar, Synthesis and in vitro cytotoxic activity of chromenopyridones, Int. J. Med. Chem., 2012 (2013) 984329. https://doi.org/10.1155/2013/984329

  2. H.M. Ibrahim, H. Behbehani, N.S. Mostafa, Scalable sonochemical synthetic strategy for pyrazolo[1,5-a]pyridine derivatives: First catalyst-free concerted [3 + 2] cycloaddition of alkyne and alkene derivatives to 2-imino-1h-pyridin-1-amines, ACS Omega. 4(4) (2019) 7182–7193. https://doi.org/10.1021/acsomega.9b00562

  3. F. Salhi, N. Cheikh, D. Villemin, B. Mostefa-Kara, N. Bar, K. Jarsalé, N. Choukchou-Braham, Catalyzed reaction of enaminonitrile with primary amines by SbF3: Synthesis of new 2-aminosubstituted-pyridine-fused δ-lactones, Arkivoc. (2018) 65-74. https://doi.org/10.24820/ark.5550190.p010.495

  4. O.A. Lozinski, T.V Shokol, R.I. Zubatyuk, O.V Shishkin, V.P. Khilya, An alternative approach to the synthesis of 5H-chromeno[4,3-b]pyridin-5-one system using the cleavage of 5H,9H-pyrano[2,3':5,6]chromeno[4,3-b]pyridine-5,9-diones with binucleophiles, 54 (2018) 96–99. https://doi.org/10.1007/s10593-018-2238-6

  5. R. Anisetti, M.S. Reddy, Synthesis, antimicrobial, anti-inflammatory and antioxidant activity of novel Spiro (imidazo[4′,5′:4,5′]benzo[1,2-e][1,4] thiazepine)-9,3′-indolines, J. Sulfur Chem. 33 (2012). https://doi.org/10.1080/17415993.2012.683432

  6. F.G. Medina, G. Marrero, M. Mac, A.G.T. Garc, Coumarin heterocyclic derivatives: chemical synthesis and biological activity, Nat. Prod. Rep., 32(10) (2015) 1472-1507. https://doi.org/10.1039/C4NP00162A

  7. A. Łazarenkow, J. Nawrot-Modranka, E. Brzezińska, U. Krajewska, M. Różalski, Synthesis, preliminary cytotoxicity evaluation of new 3-formylchromone hydrazones and phosphorohydrazone derivatives of coumarin and chromone, Med. Chem. Res. 21 (2012) 1861–1868. https://doi.org/10.1007/s00044-011-9703-4

  8. R. Devakaram, D.S. Black, V. Choomuenwai, R.A. Davis, N. Kumar, Synthesis and antiplasmodial evaluation of novel chromeno[2,3-b]chromene derivatives, Bioorganic Med. Chem. 20(4) (2012) 1527–1534. https://doi.org/10.1016/j.bmc.2011.12.037

  9. M.S. Al-Said, M.M. Ghorab, Y.M. Nissan, Dapson in heterocyclic chemistry, part VIII: Synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties, Chem. Cent. J., 6 (2012) 64. https://doi.org/10.1186/1752-153X-6-64

  10. S. Badal, S.A. Williams, G. Huang, S. Francis, P. Vendantam, O. Dunbar, H. Jacobs, T.J. Tzeng, J. Gangemi, R. Delgoda, Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from amyris plumieri, Fitoterapia. 82(2) (2011) 230–236. https://doi.org/10.1016/j.fitote.2010.10.003

  11. S. Endo, T. Matsunaga, K. Kuwata, H.T. Zhao, O. El-Kabbani, Y. Kitade, A. Hara, Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10, Bioorganic Med. Chem. 18(7) (2010) 2485–2490. https://doi.org/10.1016/j.bmc.2010.02.050

  12. E. Winter, F. Lecerf-Schmidt, G. Gozzi, B. Peres, M. Lightbody, C. Gauthier, C. Ozvegy-Laczka, G. Szakacs, B. Sarkadi, T.B. Creczynski-Pasa, A. Boumendjel, A. Di Pietro, Structure-activity relationships of chromone derivatives toward the mechanism of interaction with and inhibition of breast cancer resistance protein ABCG2, J. Med. Chem., 56(24) (2013) 9849–9860. https://doi.org/10.1021/jm401649j

  13. G. Valdameri, E. Genoux-Bastide, B. Peres, C. Gauthier, J. Guitton, R. Terreux, S.M.B. Winnischofer, M.E.M. Rocha, A. Boumendjel, A. Di Pietro, Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein, J. Med. Chem., 55(2) (2012) 966–970. https://doi.org/10.1021/jm201404w

  14. M. Kaur, I. Saraf, R. Kumar, I.P. Singh, S. Kaur, Biological effects of secondary metabolites of Inula racemosa on the parasitoid Bracon hebetor, Entomol. Exp. Appl., 169(8) (2021) 743–749. https://doi.org/10.1111/eea.13070

  15. A.M. Khalil, M.A. Berghot, M.A. Gouda, Synthesis and antibacterial activity of some new heterocycles incorporating phthalazine, Eur. J. Med. Chem., 44(11) (2009) 4448–4454. https://doi.org/10.1016/j.ejmech.2009.06.003

  16. A.A.M. Farag, N. Roushdy, N.M. El-Gohary, S.A. Halim, M.A. Ibrahim, Synthesis, DFT studies and photovoltaic characteristics of 2-amino-N-cyclohexyl-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxamide (ACCP), Appl. Surf. Sci., 467–468 (2019) 1226–1238. https://doi.org/10.1016/j.apsusc.2018.09.135

  17. S. Benanane, N. Cheikh, N.E.H. Bendhina, D. Villemin, A. Boumendjel, New coumarin derivatives accessible in short and eco-friendly conditions with antifungal activity, Future Med. Chem. 15(9) (2023) 745–756. https://doi.org/10.4155/fmc-2023-0033

  18. A.M. El-Agrody, A.M. Fouda, A.A.M. Al-Dies, Studies on the synthesis, in vitro antitumor activity of 4H-benzo[h]chromene, 7H-benzo[h]chromene[2,3-d]pyrimidine derivatives and structure-activity relationships of the 2-,3- and 2,3-positions, Med. Chem. Res., 23 (2014) 3187–3199. https://doi.org/10.1007/s00044-013-0904-x

  19. M.S. Al-Said, M.G. El-Gazzar, M.M. Ghorab, In-vitro cytotoxic and radiosensitizing evaluation of novel 2-pyridone, isoquinoline, chromene and chromenopyridone derivatives, Eur. J. Chem., 3(2) (2012) 228–234. https://doi.org/10.5155/eurjchem.3.2.228-234.596

  20. E.E. Boros, C.E. Edwards, S.A. Foster, M. Fuji, T. Fujiwara, E.P. Garvey, P.L. Golden, R.J. Hazen, J.L. Jeffrey, B.A. Johns, T. Kawasuji, R. Kiyama, C.S. Koble, N. Kurose, W.H. Miller, A.L. Mote, H. Murai, A. Sato, J.B. Thompson, M.C. Woodward, T. Yoshinaga, Synthesis and antiviral activity of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV integrase inhibitors, J. Med. Chem. 52(9) (2009) 2754–2761. https://doi.org/10.1021/jm801404b

  21. M. Mahdavi, A. Asadipour, S. Rajabalian, M. Vosooghi, L. Firoozpour, M. Nakhjiri, A. Shafiee, A. Foroumadi, Synthesis and in vitro cytotoxic activity of 2-amino-7-(dimethylamino)-4-[(trifluoromethyl)phenyl]-4H-chromenes, E-J. Chem. 8(2) (2011) 598–602. https://doi.org/10.1155/2011/929673

  22. T. Bahadur, T. Magar, S. Hee, T. Man, H. Jo, A. Shrestha, G. Bist, P. Katila, Y. Kwon, E. Lee, Synthesis and SAR study of new hydroxy and chloro-substituted II a - targeting anticancer agents, Biororg. Med. Chem., 26(8) (2018) 1909–1919. https://doi.org/10.1016/j.bmc.2018.02.035

  23. M.D. Douka, K.E. Litinas, An overview on the synthesis of fused pyridocoumarins with biological interest, Molecules. 27(21) (2022) 7256. https://doi.org/10.3390/molecules27217256

  24. M.N. Elinson, A.N. Vereshchagin, Y.E. Anisina, A.S. Goloveshkin, I.E. Ushakov, M.P. Egorov, Multicomponent transformation of salicylaldehydes, 2-aminoprop-1-ene-1,1,3-tricarbonitrile, and pyrazolin-5-ones into substituted 2,4-diamino-5-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles, Russian Chem. Bul., 67 (2018) 1695–1703. https://doi.org/10.1007/s11172-018-2278-1

  25. S.A. Glase, A.E. Corbin, T.A. Pugsley, T.G. Heffner, L.D. Wise, Synthesis and dopaminergic activity of pyridine analogs of 5-hydroxy-2-(di-n-propylamino)tetralin, J. Med. Chem. 38(16) (1995) 3132–3137. https://doi.org/10.1021/jm00016a016

  26. D.E. Beattie, R. Crossley, A.C.W. Curran, D.G. Hill, A.E. Lawrence, 5,6,7,8-Tetrahydroquinolines. 5. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinethioureas and related heterocycles, J. Med. Chem. 20(5) (1977) 718–721. https://doi.org/10.1021/jm00215a020

  27. R. Pratap, V.J. Ram, A non-catalytic approach to the synthesis of 5,6-dihydrobenzo[h]quinolines, Tetrahedron Lett. 48(15) (2007) 2755-2759. https://doi.org/10.1016/j.tetlet.2007.02.049

  28. M.A. Patel, V.G. Bhila, N.H. Patel, A.K. Patel, D.I. Brahmbhatt, Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives, Med. Chem. Res., 21 (2012) 4381–4388. https://doi.org/10.1007/s00044-012-9978-0

  29. K.S. Prakash, R. Nagarajan, An efficient synthesis of indol-3-yl benzonaphthyridines via copper (II) triflate-catalyzed heteroannulation, Tetrahedron Lett. 54(28) (2013) 3635–3638. https://doi.org/10.1016/j.tetlet.2013.04.106

  30. S.R. Jaggavarapu, A.S. Kamalakaran, V.P. Jalli, S.K. Gangisetty, R. Ganesh, G. Gaddamanugu, Facile eco-friendly synthesis of novel chromeno [4, 3-b] pyridine-2, 5-diones and evaluation of their antimicrobial and antioxidant properties, J. Chem. Sci., 126 (2014) 187–195. https://doi.org/10.1007/s12039-013-0565-9

  31. J.-F. Zhou, X.-J. Sun, F.-W. Lou, M. Lv, L.-L. Zhang, A facile one-pot, three-component synthesis of 3,3′-(4-arylpyridine-2,6-diyl)bis(2H-chromen-2-one) derivatives under microwave irradiation, Res. Chem. Intermed., 39 (2013) 1401–1408. https://doi.org/10.1007/s11164-012-0696-5

  32. Y. Kumarasamy, M. Byres, P. J. Cox, A. Delazar, M. Jaspars, L. Nahar, M. Shoeb, S.D. Sarker, Isolation, structure elucidation, and biological activity of flavone 6-c-glycosides from Alliaria petiolata, Chem. Nat. Comp., 40 (2004) 122–128. https://doi.org/10.1023/B:CONC.0000033926.72396.41

  33. M. Tiouabi, Synthèse de dérivés d’isocoumarines naturelles, métabolites du champignon pathogène Ceratocystis fimbriata sp ., Academia, 2005, 240 p.

  34. M. Hoenigl, D. Seidel, R. Sprute, C. Cunha, M. Oliverio, G.H. Goldman, A.S. Ibrahim, A. Carvalho, COVID-19-associated fungal infections, Nat. Microbiol. 7 (2022) 1127–1140. https://doi.org/10.1038/s41564-022-01172-2

  35. J. Martínez, A. Nevado, E. Suñén, M. Gabriel, A. Vélez-del-Burgo, P. Sánchez, I. Postigo, The Aspergillus niger major allergen (Asp n 3) DNA-specific sequence is a reliable marker to identify early fungal contamination and postharvest damage in Mangifera indica fruit, Front. Microbiol. 12 (2021) 1–10. https://doi.org/10.3389/fmicb.2021.663323

  36. R. Nicoletti, A. Fiorentino, Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta, Agriculture, 5(4) (2015) 918-970. https://doi.org/10.3390/agriculture5040918

  37. A. Pérez-Cantero, L. López-Fernández, J. Guarro, J. Capilla, Azole resistance mechanisms in Aspergillus: update and recent advances, Int. J. Antimicrob. Agents. 55(1) (2020) 105807. https://doi.org/10.1016/j.ijantimicag.2019.09.011

  38. F.Q.S. Guerra, R.S.A. Araújo, J.P. Sousa, V.A. Silva, F.O. Pereira, F.J.B. Mendonça, Jr., J.M. Barbosa-Filho, J.A. Pereira, E.O. Lima, A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp., Brazilian J. Microbiol. 49(2) (2018) 407–413. https://doi.org/10.1016/j.bjm.2017.06.009

  39. J.I. Pitt, A.D. Hocking, Fungi and Food Spoilage, Springer Nature, 2009. https://doi.org/10.1007/978-0-387-92207-2

  40. D. Devecioglu, M. Turker, F. Karbancioglu-Guler, Antifungal activities of different essential oils and their electrospun nanofibers against Aspergillus and Penicillium species isolated from bread, ACS Omega. 7(42) (2022) 37943–37953. https://doi.org/10.1021/acsomega.2c05105

  41. A. Nudelman, Dimeric drugs, Curr. Med. Chem., 29(16) (2022) 2751-2845. https://doi.org/10.2174/0929867328666210810124159