References
- B. Singh, V. Sharma, G. Singh, R. Kumar, S. Arora, M. Paul, S. Ishar, Synthesis and in vitro cytotoxic activity of chromenopyridones, Int. J. Med. Chem., 2012 (2013) 984329. https://doi.org/10.1155/2013/984329
- H.M. Ibrahim, H. Behbehani, N.S. Mostafa, Scalable sonochemical synthetic strategy for pyrazolo[1,5-a]pyridine derivatives: First catalyst-free concerted [3 + 2] cycloaddition of alkyne and alkene derivatives to 2-imino-1h-pyridin-1-amines, ACS Omega. 4(4) (2019) 7182–7193. https://doi.org/10.1021/acsomega.9b00562
- F. Salhi, N. Cheikh, D. Villemin, B. Mostefa-Kara, N. Bar, K. Jarsalé, N. Choukchou-Braham, Catalyzed reaction of enaminonitrile with primary amines by SbF3: Synthesis of new 2-aminosubstituted-pyridine-fused δ-lactones, Arkivoc. (2018) 65-74. https://doi.org/10.24820/ark.5550190.p010.495
- O.A. Lozinski, T.V Shokol, R.I. Zubatyuk, O.V Shishkin, V.P. Khilya, An alternative approach to the synthesis of 5H-chromeno[4,3-b]pyridin-5-one system using the cleavage of 5H,9H-pyrano[2,3':5,6]chromeno[4,3-b]pyridine-5,9-diones with binucleophiles, 54 (2018) 96–99. https://doi.org/10.1007/s10593-018-2238-6
- R. Anisetti, M.S. Reddy, Synthesis, antimicrobial, anti-inflammatory and antioxidant activity of novel Spiro (imidazo[4′,5′:4,5′]benzo[1,2-e][1,4] thiazepine)-9,3′-indolines, J. Sulfur Chem. 33 (2012). https://doi.org/10.1080/17415993.2012.683432
- F.G. Medina, G. Marrero, M. Mac, A.G.T. Garc, Coumarin heterocyclic derivatives: chemical synthesis and biological activity, Nat. Prod. Rep., 32(10) (2015) 1472-1507. https://doi.org/10.1039/C4NP00162A
- A. Łazarenkow, J. Nawrot-Modranka, E. Brzezińska, U. Krajewska, M. Różalski, Synthesis, preliminary cytotoxicity evaluation of new 3-formylchromone hydrazones and phosphorohydrazone derivatives of coumarin and chromone, Med. Chem. Res. 21 (2012) 1861–1868. https://doi.org/10.1007/s00044-011-9703-4
- R. Devakaram, D.S. Black, V. Choomuenwai, R.A. Davis, N. Kumar, Synthesis and antiplasmodial evaluation of novel chromeno[2,3-b]chromene derivatives, Bioorganic Med. Chem. 20(4) (2012) 1527–1534. https://doi.org/10.1016/j.bmc.2011.12.037
- M.S. Al-Said, M.M. Ghorab, Y.M. Nissan, Dapson in heterocyclic chemistry, part VIII: Synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties, Chem. Cent. J., 6 (2012) 64. https://doi.org/10.1186/1752-153X-6-64
- S. Badal, S.A. Williams, G. Huang, S. Francis, P. Vendantam, O. Dunbar, H. Jacobs, T.J. Tzeng, J. Gangemi, R. Delgoda, Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from amyris plumieri, Fitoterapia. 82(2) (2011) 230–236. https://doi.org/10.1016/j.fitote.2010.10.003
- S. Endo, T. Matsunaga, K. Kuwata, H.T. Zhao, O. El-Kabbani, Y. Kitade, A. Hara, Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10, Bioorganic Med. Chem. 18(7) (2010) 2485–2490. https://doi.org/10.1016/j.bmc.2010.02.050
- E. Winter, F. Lecerf-Schmidt, G. Gozzi, B. Peres, M. Lightbody, C. Gauthier, C. Ozvegy-Laczka, G. Szakacs, B. Sarkadi, T.B. Creczynski-Pasa, A. Boumendjel, A. Di Pietro, Structure-activity relationships of chromone derivatives toward the mechanism of interaction with and inhibition of breast cancer resistance protein ABCG2, J. Med. Chem., 56(24) (2013) 9849–9860. https://doi.org/10.1021/jm401649j
- G. Valdameri, E. Genoux-Bastide, B. Peres, C. Gauthier, J. Guitton, R. Terreux, S.M.B. Winnischofer, M.E.M. Rocha, A. Boumendjel, A. Di Pietro, Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein, J. Med. Chem., 55(2) (2012) 966–970. https://doi.org/10.1021/jm201404w
- M. Kaur, I. Saraf, R. Kumar, I.P. Singh, S. Kaur, Biological effects of secondary metabolites of Inula racemosa on the parasitoid Bracon hebetor, Entomol. Exp. Appl., 169(8) (2021) 743–749. https://doi.org/10.1111/eea.13070
- A.M. Khalil, M.A. Berghot, M.A. Gouda, Synthesis and antibacterial activity of some new heterocycles incorporating phthalazine, Eur. J. Med. Chem., 44(11) (2009) 4448–4454. https://doi.org/10.1016/j.ejmech.2009.06.003
- A.A.M. Farag, N. Roushdy, N.M. El-Gohary, S.A. Halim, M.A. Ibrahim, Synthesis, DFT studies and photovoltaic characteristics of 2-amino-N-cyclohexyl-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxamide (ACCP), Appl. Surf. Sci., 467–468 (2019) 1226–1238. https://doi.org/10.1016/j.apsusc.2018.09.135
- S. Benanane, N. Cheikh, N.E.H. Bendhina, D. Villemin, A. Boumendjel, New coumarin derivatives accessible in short and eco-friendly conditions with antifungal activity, Future Med. Chem. 15(9) (2023) 745–756. https://doi.org/10.4155/fmc-2023-0033
- A.M. El-Agrody, A.M. Fouda, A.A.M. Al-Dies, Studies on the synthesis, in vitro antitumor activity of 4H-benzo[h]chromene, 7H-benzo[h]chromene[2,3-d]pyrimidine derivatives and structure-activity relationships of the 2-,3- and 2,3-positions, Med. Chem. Res., 23 (2014) 3187–3199. https://doi.org/10.1007/s00044-013-0904-x
- M.S. Al-Said, M.G. El-Gazzar, M.M. Ghorab, In-vitro cytotoxic and radiosensitizing evaluation of novel 2-pyridone, isoquinoline, chromene and chromenopyridone derivatives, Eur. J. Chem., 3(2) (2012) 228–234. https://doi.org/10.5155/eurjchem.3.2.228-234.596
- E.E. Boros, C.E. Edwards, S.A. Foster, M. Fuji, T. Fujiwara, E.P. Garvey, P.L. Golden, R.J. Hazen, J.L. Jeffrey, B.A. Johns, T. Kawasuji, R. Kiyama, C.S. Koble, N. Kurose, W.H. Miller, A.L. Mote, H. Murai, A. Sato, J.B. Thompson, M.C. Woodward, T. Yoshinaga, Synthesis and antiviral activity of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV integrase inhibitors, J. Med. Chem. 52(9) (2009) 2754–2761. https://doi.org/10.1021/jm801404b
- M. Mahdavi, A. Asadipour, S. Rajabalian, M. Vosooghi, L. Firoozpour, M. Nakhjiri, A. Shafiee, A. Foroumadi, Synthesis and in vitro cytotoxic activity of 2-amino-7-(dimethylamino)-4-[(trifluoromethyl)phenyl]-4H-chromenes, E-J. Chem. 8(2) (2011) 598–602. https://doi.org/10.1155/2011/929673
- T. Bahadur, T. Magar, S. Hee, T. Man, H. Jo, A. Shrestha, G. Bist, P. Katila, Y. Kwon, E. Lee, Synthesis and SAR study of new hydroxy and chloro-substituted II a - targeting anticancer agents, Biororg. Med. Chem., 26(8) (2018) 1909–1919. https://doi.org/10.1016/j.bmc.2018.02.035
- M.D. Douka, K.E. Litinas, An overview on the synthesis of fused pyridocoumarins with biological interest, Molecules. 27(21) (2022) 7256. https://doi.org/10.3390/molecules27217256
- M.N. Elinson, A.N. Vereshchagin, Y.E. Anisina, A.S. Goloveshkin, I.E. Ushakov, M.P. Egorov, Multicomponent transformation of salicylaldehydes, 2-aminoprop-1-ene-1,1,3-tricarbonitrile, and pyrazolin-5-ones into substituted 2,4-diamino-5-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles, Russian Chem. Bul., 67 (2018) 1695–1703. https://doi.org/10.1007/s11172-018-2278-1
- S.A. Glase, A.E. Corbin, T.A. Pugsley, T.G. Heffner, L.D. Wise, Synthesis and dopaminergic activity of pyridine analogs of 5-hydroxy-2-(di-n-propylamino)tetralin, J. Med. Chem. 38(16) (1995) 3132–3137. https://doi.org/10.1021/jm00016a016
- D.E. Beattie, R. Crossley, A.C.W. Curran, D.G. Hill, A.E. Lawrence, 5,6,7,8-Tetrahydroquinolines. 5. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinethioureas and related heterocycles, J. Med. Chem. 20(5) (1977) 718–721. https://doi.org/10.1021/jm00215a020
- R. Pratap, V.J. Ram, A non-catalytic approach to the synthesis of 5,6-dihydrobenzo[h]quinolines, Tetrahedron Lett. 48(15) (2007) 2755-2759. https://doi.org/10.1016/j.tetlet.2007.02.049
- M.A. Patel, V.G. Bhila, N.H. Patel, A.K. Patel, D.I. Brahmbhatt, Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives, Med. Chem. Res., 21 (2012) 4381–4388. https://doi.org/10.1007/s00044-012-9978-0
- K.S. Prakash, R. Nagarajan, An efficient synthesis of indol-3-yl benzonaphthyridines via copper (II) triflate-catalyzed heteroannulation, Tetrahedron Lett. 54(28) (2013) 3635–3638. https://doi.org/10.1016/j.tetlet.2013.04.106
- S.R. Jaggavarapu, A.S. Kamalakaran, V.P. Jalli, S.K. Gangisetty, R. Ganesh, G. Gaddamanugu, Facile eco-friendly synthesis of novel chromeno [4, 3-b] pyridine-2, 5-diones and evaluation of their antimicrobial and antioxidant properties, J. Chem. Sci., 126 (2014) 187–195. https://doi.org/10.1007/s12039-013-0565-9
- J.-F. Zhou, X.-J. Sun, F.-W. Lou, M. Lv, L.-L. Zhang, A facile one-pot, three-component synthesis of 3,3′-(4-arylpyridine-2,6-diyl)bis(2H-chromen-2-one) derivatives under microwave irradiation, Res. Chem. Intermed., 39 (2013) 1401–1408. https://doi.org/10.1007/s11164-012-0696-5
- Y. Kumarasamy, M. Byres, P. J. Cox, A. Delazar, M. Jaspars, L. Nahar, M. Shoeb, S.D. Sarker, Isolation, structure elucidation, and biological activity of flavone 6-c-glycosides from Alliaria petiolata, Chem. Nat. Comp., 40 (2004) 122–128. https://doi.org/10.1023/B:CONC.0000033926.72396.41
- M. Tiouabi, Synthèse de dérivés d’isocoumarines naturelles, métabolites du champignon pathogène Ceratocystis fimbriata sp ., Academia, 2005, 240 p.
- M. Hoenigl, D. Seidel, R. Sprute, C. Cunha, M. Oliverio, G.H. Goldman, A.S. Ibrahim, A. Carvalho, COVID-19-associated fungal infections, Nat. Microbiol. 7 (2022) 1127–1140. https://doi.org/10.1038/s41564-022-01172-2
- J. Martínez, A. Nevado, E. Suñén, M. Gabriel, A. Vélez-del-Burgo, P. Sánchez, I. Postigo, The Aspergillus niger major allergen (Asp n 3) DNA-specific sequence is a reliable marker to identify early fungal contamination and postharvest damage in Mangifera indica fruit, Front. Microbiol. 12 (2021) 1–10. https://doi.org/10.3389/fmicb.2021.663323
- R. Nicoletti, A. Fiorentino, Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta, Agriculture, 5(4) (2015) 918-970. https://doi.org/10.3390/agriculture5040918
- A. Pérez-Cantero, L. López-Fernández, J. Guarro, J. Capilla, Azole resistance mechanisms in Aspergillus: update and recent advances, Int. J. Antimicrob. Agents. 55(1) (2020) 105807. https://doi.org/10.1016/j.ijantimicag.2019.09.011
- F.Q.S. Guerra, R.S.A. Araújo, J.P. Sousa, V.A. Silva, F.O. Pereira, F.J.B. Mendonça, Jr., J.M. Barbosa-Filho, J.A. Pereira, E.O. Lima, A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp., Brazilian J. Microbiol. 49(2) (2018) 407–413. https://doi.org/10.1016/j.bjm.2017.06.009
- J.I. Pitt, A.D. Hocking, Fungi and Food Spoilage, Springer Nature, 2009. https://doi.org/10.1007/978-0-387-92207-2
- D. Devecioglu, M. Turker, F. Karbancioglu-Guler, Antifungal activities of different essential oils and their electrospun nanofibers against Aspergillus and Penicillium species isolated from bread, ACS Omega. 7(42) (2022) 37943–37953. https://doi.org/10.1021/acsomega.2c05105
- A. Nudelman, Dimeric drugs, Curr. Med. Chem., 29(16) (2022) 2751-2845. https://doi.org/10.2174/0929867328666210810124159