References

  1. D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device, Desalination, 361 (2015) 65–71. https://doi.org/10.1016/j.desal.2015.01.035

  2. E. Dimitriou, E.S. Mohamed, C. Karavas, G. Papadakis, Experimental comparison of the performance of two reverse osmosis desalination units equipped with different energy recovery devices, Desal. Water Treat., 55(11) (2015) 3019–3026. https://doi.org/10.1080/19443994.2014.957935

  3. E. Dimitriou, E.S. Mohamed, G. Kyriakarakos, G. Papadakis, Experimental investigation of the performance of a reverse osmosis desalination unit under full-and part-load operation, Desal. Water Treat., 53(12) (2015) 3170–3178. https://doi.org/10.1080/19443994.2014.933623

  4. F.J. García Latorre, S.O. Pérez Báez, A. Gómez Gotor, Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow, Desalination, 366 (2015) 146–153. https://doi.org/10.1016/j.desal.2015.02.039

  5. J. Kheriji, A. Mnif, I. Bejaoui, B. Hamrouni, Study of the influence of operating parameters on boron removal by a reverse osmosis membrane, Desal. Water Treat., 56(10) (2015) 2653–2662. https://doi.org/10.1080/19443994.2014.968902

  6. J. Schallenberg-Rodriguez, J.M. Veza, A. Blanco-Marigorta, Energy efficiency and desalination in the Canary Islands, Renew. Sustain. Energy Rev., 40 (2014) 741–748. https://doi.org/10.1016/j.rser.2014.07.213

  7. N. Dow, S. Gray, J. Li, J. Zhang, E. Ostarcevic, A. Liubinas, P. Atherton, G. Roeszler, A. Gibbs, M. Duke, Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination, 391 (2016) 30–42. https://doi.org/10.1016/j.desal.2016.01.023

  8. N.M. Mazlan, D. Peshev, A.G. Livingston, Energy consumption for desalination – A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes, Desalination, 377 (2016) 138–151. https://doi.org/10.1016/j.desal.2015.08.011

  9. N.R.G. Walton, Electrical conductivity and total dissolved solids – what is their precise relationship? Desalination, 72 (1989) 275–292. https://doi.org/10.1016/0011-9164(89)80012-8

  10. S. Boerlage, N. Nada, Algal toxin removal in seawater desalination processes, Desal. Water Treat., 55(10) (2015) 2575–2593. https://doi.org/10.1080/19443994.2014.947785

  11. T. Bilstad, E. Protasova, A. Simonova, S. Stornes, I. Yuneizi, Wind-powered RO desalination, Desal. Water Treat., 55(11) (2015) 3106–3110. https://doi.org/10.1080/19443994.2014.939873

  12. V. Gnaneswar Gude. Desalination and sustainability – An appraisal and current perspective, Water Res., 89 (2016) 87–106. https://doi.org/10.1016/j.watres.2015.11.012

  13. F.A. Leon, A. Ramos. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desal. Water Treat., 73 (2017) 208-214. https://doi.org/10.5004/dwt.2017.20573

  14. J. Minx, K. Scott, G. Peters, J. Barrett, An Analysis of Sweden‘s Carbon Footprint—A Report to WWF Sweden; WWF: Stockholm, Sweden, 2008.

  15. C.L. Weber, H.S. Matthews, Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 66(2–3) (2008) 379–391. https://doi.org/10.1016/j.ecolecon.2007.09.021

  16. T. Wiedmann, R. Wood, M. Lenzen, J. Minx, D. Guan, J. Barrett, Development of an Embedded Carbon Emissions Indicator—Producing a Time Series of Input-Output Tables and Embedded Carbon Dioxide Emissions for the UK by Using a MRIO Data Optimisation System. Final Report to the Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Centre for Integrated Sustainability Analysis at the University of Sydney, Project Ref. EV02033, Defra: London, UK, 2008.

  17. H.S. Matthews, C.T. Hendrickson, C.L. Weber, The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 42(16) (2008) 5839–5842. https://doi.org/10.1021/es703112w

  18. J. Minx, T. Wiedmann, J. Barrett, S. Suh, Methods Review to Support the PAS Process for the Calculation of Greenhouse Gas Emissions Embodied in Goods and Services. Report to the UK Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Department for Bio-Based Products at the University of Minnesota; Project Ref.: EV2074; Defra: London, UK, 2008.

  19. B.P. Weidema, M. Thrane, P. Christensen, J. Schmidt, S. Løkke, Carbon footprint. A catalyst for life cycle assessment? J. Ind. Ecol. 12 (2008) 3–6. https://doi.org/10.1111/j.1530-9290.2008.00005.x

  20. M. Lenzen, Double-counting in life cycle calculations. J. Ind. Ecol. 12(4) (2008) 583–599. https://doi.org/10.1111/j.1530-9290.2008.00067.x

  21. A. Carballo, Utilidad de la huella ecológica y del carbono en el ámbito de la responsablidad social corporativa (RSC) y el ecoetiquetado de bienes y servicios (Usefulness of the ecological and carbon footprint in the field of corporate social responsibility (CSR) and the ecolabeling of goods and services). DELOS. 3, (2010).

  22. Consejería de Medio Ambiente de la Junta de Andalucía (Ministry of the Environment of the Andalusian government), La huella ecológica de Andalucía, una herramienta para medir la sostenibilidad (The ecological footprint of Andalusia, a tool to measure sustainability), 2006.

  23. Ministerio de medio ambiente medio rural y marino (Ministry of the Rural and Marine Environment), Análisis de la huella ecológica de España (Analysis of the ecological footprint of Spain), 2008.

  24. J. Llinares Pascual,. Propuesta metodológica para la determinación de la huella ecológica en el sector hotelero. Aplicación para las islas Canarias. (Methodological proposal for the determination of the ecological footprint in the hotel sector. Application for the Canary Islands). Tesis (Thesis). Universidad de Las Palmas de Gran Canaria (University of Las Palmas de Gran Canaria), 2015.

  25. Anuario Energético de Canarias 2017 (Canary Islands Energy Yearbook 2017). Dirección General de Industria y Energía. Gobierno de Canarias (Directorate General for Industry and Energy. Canary Islands Government), 2017.

  26. D. Attarde, M. Jain, P.K. Singh, S.K. Gupta, Energy-efficient seawater desalination and wastewater treatment using osmotically driven membrane processes, Desalination 413 (2017) 86–100. https://doi.org/10.1016/j.desal.2017.03.010

  27. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew. Sustain. Energy Rev. 24 (2013) 343–356. https://doi.org/10.1016/j.rser.2012.12.064

  28. L. Cucek, J.J. Klemes, Z. Kravanja, A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 34 (2012) 9–20. https://doi.org/10.1016/j.jclepro.2012.02.036

  29. P. Cornejo, M. Santana, D. Hokanson, J.R. Mihelcic, Q. Zhang, Carbon footprint of water reuse and desalination: A review of greenhouse gas emissions and estimation tools. J. Water Reuse Desal. 4(4) (2014) 238–252. https://doi.org/10.2166/wrd.2014.058

  30. E. Shrestha, S. Ahmad, W. Johnson, P. Shrestha, J.R. Batista, Carbon footprint of water conveyance versus desalination as alternatives to expand water supply, Desalination 280 (2011) 33–43. https://doi.org/10.1016/j.desal.2011.06.062