References

  1. Z. Helles, Y. Mogheir, Factors affecting the infiltration rate of stormwater (Case study: Three large stormwater infiltration basins in the Gaza Strip). Technix Int. J. Eng. Res. (TIJER), 9(8) (2022) 72–85.

  2. S. Hamdan, Artificial Recharge of Groundwater with Stormwater as a New Water Resource-Case Study of the Gaza Strip, Palestine. Doctoral dissertation, Berlin, Technische Universtität Berlin, 2012.

  3. S. Hamdan, U. Troeger, A. Nassar, Quality risks of stormwater harvesting in Gaza. J. Environ. Sci. Techn., 4(1) (2011) 55-64. https://doi.org/10.3923/jest.2011.55.64

  4. A.A. Mushtaha, M. Van Camp, K. Walraevens, Evolution of runoff and groundwater recharge in the Gaza Strip over the last four decades. Environmental Earth Sciences, 78 (2019) 32. https://doi.org/10.1007/s12665-018-7999-9

  5. G.A. Abd Rahman, Evaluation of the Effect of Storm Water Management System on Gaza Strip Aquifer. M.Sc. Thesis, Islamic University of Gaza, Gaza Strip, Palestine, 2016.

  6. Y.A. Madi, Assessment of the Feasibility of Reuse Options for Harvested Stormwater in Gaza Strip. M.Sc. Thesis, Islamic University of Gaza, Gaza Strip, Palestine, 2018.

  7. M. O'Hare, D. Fairchild, P. Hajali, L.W. Canter, Artificial recharge of ground water: Status and potential in the contiguous United States, U.S. Department of Energy, Office of Scientific and Technical Information, 1986.

  8. R.E. Topper, P.E. Barkmann, D.A. Bird, M.A. Sares, Artificial recharge of ground water in Colorado: A statewide assessment. Colorado Geological Survey Publications, 2004.

  9. S.P. Phillips, Aquifers, artificial recharge of. Encyclopedia of Water Science, Dekker, New York, 2003, pp. 33-36.

  10. H. Bouwer, Issues in artificial recharge. Water Sci. Tech., 33(10-11) (1996) 381-390. https://doi.org/10.1016/0273-1223(96)00441-6

  11. C. Lallana, W. Krinner, T. Estrela, C.S. Nixon, J. Leonard, J.M.Berland, Sustainable Water Use in Europe, EEA, Copenhagen, 2001.

  12. A. Aish, N. De Smedt, Hydrogeological Study and Artificial Recharge Modeling of the Gaza Coastal Aquifer Using GIS and MODFLOW. Unpublished dissertation (PhD), VrijeUniversiteitBrussel (VUB), Belgium, 2004.

  13. F.F. Al-Muttair, A.S. Al-Turbak, Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. – Eng. Sci., 3(1) (1991) 89-99. https://doi.org/10.1016/S1018-3639(18)30539-7

  14. S.M. Hsu, C.F. Ni, P.F. Hung, Assessment of three infiltration formulas based on model fitting on Richard’s equation. J. Hydrol. Eng., 7(5) (2002) 373-379. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(373)

  15. J. Rogasik, K. Panten, E. Schnug, H. Rogasik, Infiltration Management Factors. In Encyclopedia of Soil Science, 2004.

  16. M.K. Shukla, R. Lal, M. Ebinger, Determining soil quality indicators by factor analysis. Soil Tillage Res., 87(2) (2006) 194-204. https://doi.org/10.1016/j.still.2005.03.011

  17. I. Shainberg, G.J. Levy, Infiltration and seal formation processes. In Soil Erosion, Conservation, and Rehabilitation. New York, Marcel Dekker, 1995, pp. 1-22.

  18. W. Durner, Bohrloch-Infiltration. Skript. Institut für Geoökologie, Abteilung Bodenkunde und Bodenphysik. TU Braunschweig, 2008.

  19. W. Durner, Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 30(2) (1994) 211-223. https://doi.org/10.1029/93WR02676

  20. W. Durner, K. Lipsius, Determining soil hydraulic properties. In Encyclopedia of Hydrological Sciences, 2006. https://doi.org/10.1002/0470848944.hsa077b

  21. D. Hillel, Fundamentals of Soil Physics. Academic Press Inc., New York, USA, 1980.

  22. C.L. Jejurkar, Formulation of different infiltration equations on different land covers. (Unpublished M.E. dissertation), SGGS College of Engineering and Technology, Nanded, Maharashtra, 2005.

  23. N. Sonaje, Modelling of infiltration process. Indian J. Appl. Res., 3(9) (2013) 226-230. http://dx.doi.org/10.15373/2249555X/SEPT2013/69

  24. K.M. Perroux, I. White, Designs for disc permeameters. Soil Sci. Soc. America J., 52(5) (1988) 1205-1215. https://doi.org/10.2136/sssaj1988.03615995005200050001x

  25. M. Fatehnia, K. Tawafiq, T. Abichou, Comparison of the methods of hydraulic conductivity estimation from mini disk infiltrometer. Electron. J. Geotech. Eng., 19 (2014) 1047-1063.

  26. M. Fatehnia, Automated Method for Determining Infiltration Rate in Soils, Doctoral dissertation, Florida State University, 2015.

  27. R.W. Skaggs, L.E. Huggins, E.J. Monke, G.R. Faster, Experimental evaluation of infiltration equations. Trans. ASAE, 12(6) (1969) 0822-0828. https://doi.org/ 10.13031/2013.38964

  28. L.A. Richards, Capillary conduction of liquids through porous mediums. Physics, 1(5) (1931) 318-333. https://doi.org/10.1063/1.1745010

  29. T. Ortiz-Reyes, Experimental evaluation of infiltration using Holtan, Philip, and Mein and Larson equations, M.Sc. thesis, University of Arizona, 1979.

  30. S. Assouline, Infiltration into soils: Conceptual approaches and solutions. Water Resour. Res., 49(4) (2013) 1755-1772. https://doi.org/10.1002/wrcr.20155

  31. W. Viessman, G.L. Lewis, J.W. Knapp, T.E. Harbaugh, Introduction to Hydrology, 3rd ed., Harpercollins College Div., 1989.

  32. R.V. Kale, B. Sahoo, Green-Ampt infiltration models for varied field conditions: A revisit. Water Resour. Manage., 25(14) (2011) 3505-3536. https://doi.org/10.1007/s11269-011-9868-0

  33. J.C.Y. Guo, W. Hughes, Storage volume and overflow risk for infiltration basin design. J. Irrig. Drain. Eng., 127(3) (2001) 170-175. https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(170)

  34. L.M. Risse, M.A. Nearing, M.R. Savabi, Determining the Green-Ampt effective hydraulic conductivity from rainfall-runoff data for the WEPP model. Trans. ASAE, 37(2) (1994) 411-418. https://doi.org/10.13031/2013.28092

  35. G. Aron, Adaptation of Horton and SCS infiltration equations to complex storms. J. Irrig. Drain. Eng., 118(2) (1992) 275-284. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:2(275)

  36. S.W. Bauer, A modified Horton equation for infiltration during intermittent rainfall. Hydrol. Sci. J., 19(2),(1974) 219-225. https://doi.org/10.1080/02626667409493900

  37. F.D. Whisler, H. Bouwer, Comparison of methods for calculating vertical drainage and infiltration for soils. J. Hydrol., 10(1) (1970) 1-19. https://doi.org/10.1016/0022-1694(70)90051-X

  38. H.N. Holtan, Concept for Infiltration Estimates in Watershed Engineering. Agricultural Research Service, U.S. Department of Agriculture, 1961.

  39. H.N. Holtan, N.R. Creitz, Influence of soils, vegetation, and geomorphology on elements of the flood hydrograph. In Int Assoc Sci Hydrol/world Meteorol Organ Proc Leningr Symp., 1967.

  40. H.N. Holtan, USDAHL-74 Revised model of watershed hydrology: A United States contribution to the international hydrological decade (No. 1518). Agricultural Research Service, US Department of Agriculture, 1975.

  41. N.P. Sonaje, M.L. Waikar, Application of Mathcad for hydrological analysis using natural resources conservation service method. J. Indian Water Works Assoc., XXXXI (2) (2009) 136-143.

  42. H. Bouwer, Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10 (2002) 121-142. https://doi.org/10.1007/s10040-001-0182-4

  43. P.S. Datta, Water Harvesting for Groundwater Management: Issues, Perspectives, Scope, and Challenges. John Wiley & Sons, 2019. https://doi.org/ 10.1002/9781119472087

  44. Maryland Department of Natural Resources. Standards and Specifications for Infiltration Practices. Water Resources Administration, Stormwater Management Division, Annapolis, Md., 1984.

  45. Federal Highway Administration. Urban Drainage Design Manual. Hydraulic Engineering Circular No. 22, Office of Engineering, Washington, D.C., 1996.

  46. A.O. Akan, Modified rational method for sizing infiltration structures. Canad. J. Civil Eng., 29(4) (2002) 539-542. https://doi.org/10.1139/l02-038

  47. J. Massmann, Implementation of infiltration ponds research (No. WA-RD 578.1). Washington State Transportation Commission, 2003.

  48. E.C. Edwards, T. Harter, G.E. Fogg, B. Washburn, H. Hamad, Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J. Hydrol., 539 (2016) 539-553. https://doi.org/10.1016/j.jhydrol.2016.05.059

  49. Cbec, Eco Engineering Magazine. Elk Grove Dry Wells Storm Event Water Quality and Flow Monitoring, January 12, 2017. https://www.cbecoeng.com

  50. City of Portland Bureau of Environmental Services. Decision making framework for groundwater protectiveness demonstrations: underground injection control system evaluation and response, 2008. http:// www.portlandoregon.gov/bes/48213

  51. C.N. Zangar, Theory and problems of water percolation (No. 8). Technical Information Office, 1953.

  52. H. Bouwer, Groundwater Hydrology. McGraw-Hill Book Company, New York, 1978.

  53. L. Shi, J.J. Jiao, Seawater intrusion and coastal aquifer management in China: a review. Environ. Earth Sci., 72 (2014) 2811-2819. https://doi.org/10.1007/s12665-014-3186-9

  54. E.B. Williams, Fundamental concepts of well design. Groundwater, 19(5) (1981) 527-542. https://doi.org/10.1111/j.1745-6584.1981.tb03504.x

  55. B.I. Sirdah, Enhancement of the Efficiency of Infiltration Basins for Effluent Recharge, M.Sc. Thesis, Islamic University of Gaza, Gaza Strip, Palestine, 2013.

  56. E.V. Brevnova, Green-Ampt infiltration model parameter determination using SCS curve number (CN) and soil texture class, and application to the SCS runoff model. West Virginia University, 2001. Graduate Theses, Dissertations, and Problem Reports. 1152. https://researchrepository.wvu.edu/etd/1152

  57. N. El Arabi, Environmental management of groundwater in Egypt via artificial recharge extending the practice to soil aquifer treatment (SAT). Int. J. Environ. Sustain., 1(3) (2012) 66-82.

  58. A.K. Bhattacharya, Artificial ground water recharge with a special reference to India. Int. J. Res. Rev. Appl. Sci., 4(2) (2010) 214-221.

  59. S. Toze, J. Hanna, T. Smith, L. Edmonds, A. McCrow, Determination of water quality improvements due to the artificial recharge of treated effluent. Water and Energy Abstracts, 15(2) (2005) 20-21.

  60. SWECO International AB Stockholm, Northern Gaza WWTP Infiltration System. Final Report, Report No. 4, Final Version, 2003. Unpublished report.

  61. J. Guttman, Geo-hydrological Analyses in Selecting Artificial Recharge Sites. Sites Training for Operation of Effluent Infiltration Basins Seminar for Palestinians and Jordanians Shefayim and Shafdan, 2012. Unpublished report.

  62. J. Rubin, Theory of rainfall uptake by soils initially drier than their field capacity and its applications. Water Resour. Res., 2(4) (1966) 739-749. https://doi.org/10.1029/WR002i004p00739

  63. G.B. Bodman, E.A. Colman, Moisture and energy conditions during downward entry of water into soils. Soil Sci. Soc. Amer. J., 8(C) (1944) 116-122. https://doi.org/10.2136/sssaj1944.036159950008000C0021x

  64. D. Hillel, Soil and Water: Physical Principles and Processes. Academic Press, New York, 1971.

  65. D.S. McIntyre, Soil splash and the formation of surface crusts by raindrop impact. Soil Sci., 85(5) (1958) 261-266.

  66. I. Seginer, J. Morin, A model of surface crusting and infiltration of bare soils. Water Resour. Res., 6(2) (1970) 629-633. https://doi.org/10.1029/WR006i002p00629

  67. A. Pinheiro, L.P. Teixeira, V. Kaufmann, Capacity of infiltration of water in a soil under different uses and practices of agricultural management. Ambiente e agua, Taubaté, 4(2) (2009) 188-199.

  68. C. Lin, D. Greenwald, A. Banin, Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Amer. J., 67(2) (2003) 487-493. https://doi.org/10.2136/sssaj2003.4870

  69. United States Department of Agriculture (USDOA). Soil Infiltration [online]. Available from https://agcrops.osu.edu/newsletter/corn-newsletter/201803/soil-infiltration, 2018 (March 2019).

  70. S. Miller, Handbook for Agrohydrology. Natural Resources Institute (NRI), 1994.

  71. M. Dadkhah, G.F. Gifford, Influence of vegetation, rock cover, and trampling on infiltration rates and sediment production. JAWRA, 16(6) (1980) 979-986. https://doi.org/10.1111/j.1752-1688.1980.tb02537.x

  72. S.L. Dingman, Physical Hydrology. Macmillan College Publishing Company, New York, 1994, 575 pp.

  73. R. Spandre, Artificial Groundwater Recharge, Groundwater, Vol. III, Encyclopedia of Life Support Systems (EOLSS). University of Pisa, Italy, 1999. https://www.eolss.net/sample-chapters/c07/E2-09-06-06.pdf

  74. H. Bouwer, Effect of water depth and groundwater table on infiltration from recharge basins. In Irrigation and Drainage, ASCE, July 1990, pp. 377-384.

  75. H. Bouwer, R.C. Rice, Effect of water depth in groundwater recharge basins on infiltration. J. Irrig, Drain. Eng., 115(4) (1989) 556-567. https://doi.org/10.1061/(ASCE)0733-9437(1989)115:4(556)

  76. J.B. Kool, M.T. van Genuchten, One-dimensional variably saturated flow and transport model including hysteresis and root water uptake. Hydro Geologic Inc., 1989.

  77. M.T. Van Genuchten, A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44(5) (1980) 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

  78. L.R. Ahuja, J.W. Naney, R.D. Williams, Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc. Amer. J., 49(5) (1985) 1100-1105. https://doi.org/10.2136/sssaj1985.03615995004900050005x

  79. I.D. Moore, Infiltration equations modified for surface effects. J. Irrig. Drain. Div., 107(1) (1981) 71-86. https://doi.org/10.1061/JRCEA4.0001340

  80. S.W. Taylor, P.R. Jaffé, Substrate and biomass transport in a porous medium. Water Resour. Res., 26(9) (1990) 2181-2194. https://doi.org/10.1029/WR026i009p02181

  81. M. Schoenmakers, Redefining infiltration drywell design: A study on design and functioning in theory as in practice, Master’s thesis, Delft University of Technology, 2022. TU Delft Repository.

  82. Seasonal Rainfall Assessment in the Gaza Strip by PWA. A Report Prepared by: Mahmoud Abdel Latif, Director of Water Information Bank Department. Gaza, Palestine, Palestinian Water Authority (PWA), 2013. Published on www.pwa.ps.

  83. Annual Progress Report in 2015. Gaza Strip, Palestine. Unpublished Report. CMWU, (Coastal Municipalities Water Utility), 2016.

  84. Information sheet of all water infiltration facilities in Gaza. Gaza Strip, Palestine. Unpublished Report. CMWU, (Coastal Municipalities Water Utility), 2022.

  85. Z. Helles, Y. Mogheir, Assessment of stormwater infiltration basins models developed in Gaza Strip. J. Eng. Res. Technol., 9(2) (2022) 19-26. https://doi.org/10.33976/JERT.9.2/2022/3

  86. 2000 Maryland Stormwater Design Manual. Maryland Department of the Environment, 2009.

  87. M. Linsenmayer, S.M. Van Sluijs, Infiltration Basins: Standards and Procedures to Ensure Performance (No. TRS 1801). Minnesota. Dept. of Transportation. Research Services & Library, 2018.

  88. A.J. Erickson, P.T. Weiss, J.S. Gulliver, Maintenance of Stormwater Treatment Practices. Optimizing stormwater treatment practices: A Handbook of Assessment and Maintenance, 2013, pp. 265-283.

  89. J. Abu Shammala, Assessment of Stormwater Infiltration Basins in Gaza Strip, Case Study: Asadaqa basin-Asqual basin-Alamal basin. M.Sc. Thesis, Islamic University of Gaza, Gaza Strip, Palestine, 2020.