

EDS Porto 2025 (2025) 86–97 doi: 10.5004/po2024113

Desalination for the Environment: Clean Water and Energy Alfândega Congress Centre, Porto, Portugal 27–30 April 2025

Waste to value – a pilot demonstration and economic analysis of vaterite calcium carbonate production using brine, CKD, and CO₂

Seungwon Ihm^{1*}, Abdallatif Satti Abdalrhman¹, Mohammed Al-Talibi¹, Omar Al-Raqibah¹, Ammar Alnumani¹, Eslam Alwaznani¹, Youngho Lee², Kichul Park², Jinuk Heo², Won Jo³, Sehun Kim³, Myoung-Jin Kim³

¹Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia, email: swihm78@daum.net; sihm@swcc.gov.sa (S. Ihm), ²Taekyung R&D Center, Seoul 07570, Republic of Korea,

³Korea Maritime and Ocean University, Busan 49112, Republic of Korea.

ABSTRACT

This study presents a pilot-scale demonstration and techno-economic assessment of producing high-purity vaterite-type calcium carbonate (CaCO₃) through indirect carbonation, by utilising seawater reverse osmosis (SWRO) brine, cement kiln dust (CKD), and captured carbon dioxide (CO₂). A 50-ton-per-annum (TPA) pilot plant was constructed and operated in Jubail, Saudi Arabia, producing spherical vaterite CaCO₃ with verified purity and whiteness suitable for premium industrial applications. CKD provided the calcium source (40%-60% CaO content), while brine served as an effective solvent, eliminating the need for synthetic chemicals. CO₂ was directly injected to precipitate vaterite CaCO₃, achieving the major quality targets of ≥97% CaCO₃ purity, ≥80% vaterite content, ≥99% whiteness, and ≤3 μm particle size. Economic analysis for a scaled-up 100,000 TPA plant revealed a highly attractive internal rate of return (IRR >60%) and short return on investment (ROI <1.5 years), even under conservative market and CO₂ pricing assumptions. The process also demonstrated substantial greenhouse gas (GHG) reduction potential, particularly when integrated with low-carbon electricity. This work highlights a practical pathway for valorising desalination brine, utilising industrial waste, and enhancing CO₂ utilisation through the production of value-added vaterite CaCO₃.

Keywords: Indirect carbonation; Beneficial use of desalination brine; Vaterite; Calcium carbonate; Carbon capture utilisation and storage (CCUS); Brine valorisation